Injection vs Incisional treatment of Strabismus

Joel M Miller, PhD

jmm@eidactics.com

Eidactics eidactics.com

The Strabismus Research Foundation of San Francisco srfsf.org

eidactics.com

The Strabismus
Research Foundation

Eidactics
Eye muscles & motor control

The Strabismus Research Foundation is a 501(c)(3) non-profit operating foundation (EIN 46-1989857) devoted to translational research in ocular motility. Eidactics ("eye-DAK-tics") is a California company (EIN 20-4569747) conducting pure and applied oculomotor research.

Alan B Scott, MD

- Director & Senior Scientist at The Strabismus Research Foundation (SRF), and Senior Scientist at Eidactics (2013-2021).
- Senior Scientist at The Smith-Kettlewell Eye Research Institute (SKERI; 1959-2016).

Joel M Miller, PhD

- Director & Senior Scientist at Eidactics, and Director of Research at The Strabismus Research Foundation (SRF).
- Senior Scientist at The Smith-Kettlewell Eye Research Institute (SKERI; 1982-2013).

STRABOS 2025 Lectures

- EOM Pulleys and Compartments Sense and Nonsense PDF
 Dismechanical Analysis of Strabismus Strengths Limitations PDF
- Injection vs Incisional Treatment of Strabismus PDF

Get MYOTOX® Brand Bupivacaine Today!

What do your coworkers see when they look at you? A silly, smiling bimbo? Or a serious hard-working colleague? Let MYOTOX up your game!

Injection Treatment or Surgery?

- Mechanisms are distinct: injections alter intrinsic muscle properties stiffness & contractility – whereas surgery affects muscle lengths & directions of action.
- Unlike surgery, injection treatment does not damage extraocular biomechanics with compensatory damage or by leaving scars.
- Injections are not obstructed by pre-existing surgical or other damage.
- Injection is a low-cost office procedure that does not require general anesthesia in cooperative adults, and only brief anesthesia in others, eg, the very young & old.
- Injection may be a good choice to correct post-operative deviations in patients with good potential for binocularity, who wish to avoid reoperation
- Injection may be specifically indicated where previous retinal or glaucoma procedures have left adhesions and fibroses, as when an EOM is incorporated in the capsule surrounding a scleral buckle or glaucoma drainage device

Injections in Children

- 1. Small, voluntarily-controlled muscles can be identified for injection in alert, cooperative patients with voluntary movements and EMG recording.
- 2. When such recording is not possible, eg, under general anesthesia, electrical <u>stimulation</u> can produce characteristic movements that help identify muscles.
- 3. Young children can thereby be injected under brief general anesthesia.
- 4. We developed a device to produce a train of monophasic 0.2-10.0 mA constant-current, 0.5 ms wide, negative square-wave pulses at frequencies up to 250 Hz

Stiffness & Contractility are Intrinsic EOM Tissue Properties, Not Directly Affected by Surgical Manipulation

Muscle Force has two components:

- 1. Contractile Force depends mostly on innervation, but also on Stretch (sliding filament model).
- 2. Elastic Force is a function of Stretch only.
- 3. Their sum is the total force exerted by the muscle.

3 Different Manipulations, All Called "Strengthening"

- Increasing contractility, increasing stiffness & shortening an LR might all treat esotropia, eg, but they are not equivalent.
- Only increasing contractility can increase range of gaze.
- Only stiffening can preferentially restrict movement out of a muscle's field of action.

Bupivacaine Mechanisms

- Bupivacaine stimulates a muscle chemically, a bit like how overloading stimulates it mechanically - both damage sarcolemma & release growth factors.
 - Bupivacaine releases excessive Ca⁺⁺

 → hypercontraction → sarcolemmal damage
 - Ca⁺⁺-activated protease cuts α-actin, separating sarcomeres at Z-lines.
 - High Ca++ poisons mitochondria, damaging or destroying the cell.
- FIG. 7. Electron micrographs of rat muscle fibers 2 hr after bupivacaine injection. Top: Z-band lysis has occurre Bottom: The myofibrils have separated into "envelopes" at the former sites of the Z-bands. Calibration bar: abo 2.5 μ, below 3.5 μ.
 - (from Bradley 1980)

- 2. Growth factors activate satellite cells, which either:
 - Add nuclei to <u>repair</u> damaged fibers, which tend to retain added nuclei, becoming larger and <u>contractilely stronger</u>, or
 - Destroy & <u>replace</u> badly damaged fibers.
- 3. Some additional fibrous tissue (from inflammation?) increases muscle stiffness.
 - Length of the rebuilt muscle is affected by eye position during rebuilding, which Dr Scott manipulated with a small dose of Botox in the antagonist, allowing the BUP-injected muscle to rebuild at reduced length.

Two Strategies for Increasing Contractility?

- High concentrations of bupivacaine cause general myofiber damage, triggering repair, replacement and increased contractility, along with increased stiffness related to inflammation and fibrosis.
- 2. <u>Lower concentrations might increase contractility without increasing stiffness:</u>
 - Volume, as we know, increases as the cube of length, whereas surface area increases only as the square. Thus small muscle fibers have relatively more surface area to volume compared to large fibers.
 - A fiber's resources for self-repair are related to its <u>volume</u> (eg, the number of protein-synthesizing nuclei).
 - Its vulnerability to external damage, eg, from bupivacaine, is related to its surface area.
 - Small fibers should therefore be more vulnerable to non-reparable destruction.
 - If small fibers destroyed by bupivacaine are replaced by average-sized fibers, the overall distribution of fiber sizes will increase, resulting in a contractilely stronger muscle.

Modes of Strabismus Management

		Surgery	Botox®	BUP (+ Botox)
Stiffness	Increase			
	Decrease			
Length*	Shorten		(in antagonist)	
	Lengthen			
Contractility	Increase			
	Decrease		(temporary)	
Alter Action Vector				
Increase Range of Gaze				
Office Procedure				

^{*} Length of contractile tissue

Bupivacaine Corrections are Stable

Primary Position gaze (Δ)

Volumes & Crossectional Areas

 Pre-Injection, post-Injection, and follow-up scans track changes in muscle volume

 Crossection analysis shows location of injection bolus (*), and pattern of regrowth (*, *, *)

Bupivacaine Increases Fast Myosin in Rabbit

- "Fast Myosin" is the protein responsible for rapid, strong muscle contraction.
- It's normally expressed in the global fiber layer, but not in the orbital layer.
- One week after injection of 3% bupivacaine in rabbit SR, fast myosin is found in previously destroyed orbital layer areas, and is increased overall.
- This increase is maintained at 3 months.

Global Layer

Orbital Layer

Contractile Force Is Increased at 3 Months

- Early results of in vitro electrical stimulation in rabbit EOM show decreases in force consistent with initial myodestruction ...
- ... and increases in contractile force after recovery.

Average Outcomes – Adults, Comitant, N = 74

(Majority had previously been surgical failures)

Group	Initial Misalignment	Number of treatments			
Small Misalignments ≤ 25∆ n = 44	17.1∆	1.9	12.8∆	57%	77%
Large Misalignments > 25∆ n = 30	35.9∆	1.7	24.7∆	63%	50%

Dosage Recommendations

	BUP	Botox	
Deviation	(Dose depends on deviation)	(Dose depends on restriction)	
40 004	1.0-1.5%	0 2 1 1	
10 - 20∆	1.5-2 mL	0–2 U	
20 20 4	1.5-2.0%	2–4 U	
20 - 30∆	2-3mL		
204 111	2-3%	2–6 U	
30∆ +++	2-3 mL		

Clinical Take-Home

- Bupivacaine + botulinum toxin injections are safe office procedures giving clinically significant, lasting corrections.
- Bupivacaine + Botox gives about twice the correction of bupivacaine alone.
- "Use Patents" granted to Alan Scott cover manufacture only. No proprietary restrictions on medical use.
- Botox paralysis may move the eye to where motor fusion can take hold and maintain alignment.
- ... but, in the absence of fusion strabismus tends to recur because sarcomere changes for the new position are not strong and permanent.
- Bupivacaine treated muscles are larger, stronger and stiffer. Correction is long-lasting, apparently permanent.
- Patients with very small deviations (diplopia if over-corrected) are probably better treated surgically.

eidactics.com

The Strabismus
Research Foundation

The Strabismus Research Foundation is a 501(c)(3) non-profit operating foundation (EIN 46-1989857) devoted to translational research in ocular motility. Eidactics ("eye-DAK-tics") is a California company (EIN 20-4569747) conducting pure and applied oculomotor research.

Alan B Scott, MD

- Director & Senior Scientist at The Strabismus Research Foundation (SRF), and Senior Scientist at Eidactics (2013-2021).
- Senior Scientist at The Smith-Kettlewell Eye Research Institute (SKERI; 1959-2016).

Joel M Miller, PhD

- Director & Senior Scientist at Eidactics, and Director of Research at The Strabismus Research Foundation (SRF).
- Senior Scientist at The Smith-Kettlewell Eye Research Institute (SKERI; 1982-2013).

STRABOS 2025 Lectures

- EOM Pulleys and Compartments Sense and Nonsense PDF
- Biomechanical Analysis of Strabismus Strengths and Limitations PDF
- Injection vs Incisional Treatment of Strabismus PDF

