Injection vs Incisional treatment of Strabismus

Joel M Miller, PhD

jmm@eidactics.com

Eidactics eidactics.com

The Strabismus Research Foundation of San Francisco srfsf.org

Get MYOTOX® Brand Bupivacaine Today!

What do your coworkers see when they look at you? A silly, smiling bimbo? Or a serious hard-working colleague? Let MYOTOX up your game!

Injection Treatment or Surgery?

- Mechanisms are distinct: injections alter intrinsic muscle properties stiffness & contractility – whereas surgery affects muscle lengths & actions (pulling vectors).
- Unlike surgery, injection treatment does not damage extraocular biomechanics by effecting compensatory damage or simply leaving scars.
- Injections are not obstructed by pre-existing surgical or other damage.
- Injection is a low-cost office procedure that does not require general anesthesia in cooperative adults, and only brief anesthesia in others, eg, the very young & old.
- Injection may be a good choice to correct post-operative deviations in patients with good potential for binocularity, who wish to avoid re-operation
- Injection may be specifically indicated where previous retinal or glaucoma procedures have left adhesions and fibroses, as when an EOM is incorporated in the capsule surrounding a scleral buckle or glaucoma drainage device

Injections in Children

- Small, voluntarily-controlled muscles can be identified for injection in alert cooperative patients with voluntary movements and EMG <u>recording</u>.
- When not possible, eg, under general anesthesia, electrical <u>stimulation</u> can produce movements that help identify muscles.
- Young children can thereby be injected under brief general anesthesia.
- We developed a device to produce a train of monophasic 0.2-10.0 mA constant-current, 0.5 ms wide, negative square-wave pulses at frequencies up to 250 Hz

Stiffness is an Intrinsic EOM Property

- Elastic Force (g) = Stiffness (g/mm) X Stretch (mm).
- Stiffening a muscle <u>decreases</u> eye rotation <u>out of</u> the muscle's field of action.
- Stiffening a muscle <u>decreases</u> range of gaze.

Contractility is an Intrinsic EOM Property

- Contractile Force is a function of innervation, but also depends on Stretch (sliding filament model).
- Strengthening a muscle increases eye rotation in the muscle's field of action.
- Strengthening a muscle increases range of gaze.

Muscles can be Surgically Shortened

- Shortening a muscle shifts the alignment pattern towards the shortened muscle.
- Shortening a muscle <u>decreases</u> range of gaze if muscle (in addition to tendon) is removed.

3 Different Properties, All Called "Strengthening"

- Increasing Contractility, increasing stiffness & shortening an LR all treat esotropia, eg, but they are not equivalent.
- Only increasing contractility can increase range of gaze.
- Only stiffening can preferentially restrict movement out of a muscle's field of action.

Modes of Strabismus Management

		Surgery	Botox®	BUP (+ Botox)
Stiffness	Increase			
	Decrease			
Length*	Shorten		(in antagonist)	
	Lengthen			
Strength	Increase			
	Decrease		(temporary)	
Alter Action Vector				
Increase Range of Gaze				
Office Procedure				

^{*} Length of contractile tissue

Bupivacaine Mechanisms

- Overloading stimulates muscles mechanically.
 Bupivacaine stimulates them chemically.
- BUP releases excessive Ca⁺⁺.
- Ca⁺⁺-activated protease cuts α-actin, separating sarcomeres at Z-lines.

 High Ca++ poisons mitochondria, damaging or destroying the cell.

(from Bradley 1980)

- Growth factors activate satellite cells (muscle stem cells).
- · Satellite cells <u>replace</u> destroyed myofibers, or add nuclei to <u>repair</u> damaged myofibers.
- Repaired fibers tend to retain added nuclei, resulting in a larger, contractilely stronger fiber.
- Some additional fibrous tissue (consequent to inflammation?) increases muscle <u>stiffness</u>.
- Length of the rebuilt muscle appears determined by eye position during rebuilding, which
 we can manipulate with a small dose of Botox in the antagonist, allowing the BUP-injected
 muscle to rebuild at reduced length.
- BUP + Botox produces about twice the correction achieved with BUP alone.

A Possible Strategy

- A fiber's resources for self-repair are related to its <u>volume</u> (eg, the number of protein-synthesizing nuclei).
- Its vulnerability to external damage, eg, from bupivacaine, is related to its <u>surface area</u>.
- Therefore, small fibers should be more vulnerable to nonreparable destruction.
- If destroyed small fibers are replaced by average-sized fibers, the overall distribution of fiber sizes will increase ...
- ... resulting in a contractilely stronger muscle.

Bupivacaine Increases Fast Myosin in Rabbit

- "Fast Myosin" is the protein responsible for rapid, strong muscle contraction.
- It's normally expressed in the global fiber layer, but not in the orbital layer.
- One week after injection of 3% bupivacaine in rabbit SR, fast myosin is found in previously destroyed orbital layer areas, and is increased overall.
- This increase is maintained at 3 months.

Global Layer

Orbital Layer

Contractile Force Is Increased at 3 Months

- Early results of electrical stimulation in rabbit EOM show decreases in force consistent with myodestruction ...
- ... and increases in contractile force after recovery.

Current Treatment Doses

Initial	Bupiva	caine 3%		(u) Epi
Deviation (Δ)	Vol (mL)	Conc (%)	Toxin (u)	
8 - 15	1.5	1.5	0	0
16 - 30	2.5	2.0	2.5	+
> 30	3.0	3.0	5.0	++

Bupivacaine Corrections are Stable

Primary Position gaze (Δ)

Average Outcomes – Adults, Comitant, N = 74

(Majority had previously been surgical failures)

Group	Initial Misalignment	Number of treatments			
Small Misalignments ≤ 25∆ n = 44	17.1∆	1.9	12.8∆	57%	77%
Large Misalignments > 25∆ n = 30	35.9∆	1.7	24.7∆	63%	50%

Volumes & Crossectional Areas

 Pre-Injection, post-Injection, and follow-up scans track changes in muscle volume

 Crossection analysis shows location of injection bolus (*), and pattern of regrowth (*, *, *)

Dosage Recommendations

	BUP	Botox	
Deviation	(Dose depends on deviation)	(Dose depends on restriction)	
10 204	1.0-1.5%	0–2 U	
10 - 20∆	1.5-2 mL		
	1.5-2.0%	2–4 U	
20 - 30Δ	2-3mL		
204 111	2-3%	0 6 1 1	
30∆ +++	2-3 mL	2–6 U	

Clinical Take-Home

- BPX and botulinum toxin injection is a safe office procedure giving clinically significant, lasting corrections.
- Use Patents to Alan Scott cover manufacture. No restrictions on medical use.
- Botox paralysis moves the eye to where motor fusion can take hold and maintain alignment.
- But, in the absence of fusion strabismus often recurs because sarcomere changes for the new position are not strong and permanent.
- BUP treated muscles are larger, shorter, stronger, and stiffer and correction is long-lasting, apparently permanent.
- In the absence of fusion, we need a mechanically effective treatment like this.
- Patients with very small deviations (diplopia if over-corrected) are probably better treated surgically