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Abstract-The belly of each extraocular muscle is elastically coupled to both the globe and orbit. The 
dependence of muscle planes on gaze angle must be determined experimentally. In monkeys, radio-opaque 
markers were implanted along the upper and lower margins of a lateral rectus. A scleral search coil was 
implanted in the other eye. With the eye in various gaze positions, X-ray images were made to show the 
LR in the lateral view. We found that as the eye rotates vertically over 50 deg ( ± 25 deg), the point of 
tangency of the LR with the globe slips an average of 5.1 mm vertically with respect to the globe, allowing 
this point-and so the muscle plane-to remain approximately fixed relative to the orbit. The results of 
quantitative orbital dissections are presented in support of the sideslip calculations. 

Extraocular muscle Monkey Muscle plane Muscle sideslip Ocular model Ocular statics 
Orbital geometry 

INTRODUCTION 

The first attempt at a complete analysis of the 
mechanics of binocular alignment (Robinson, 
1975) became possible when human extraocular 
muscle force was first measured as a function 
of length and innervation (Robinson, 1969; 
Collins, 1969). Recently, it has been possible to 
improve on this model and extend it in a 
number of ways (Miller and Robinson, 1984). 
Some of the advances of this model (called 
"SQUINT") were: 

(I) The theoretical analysis of muscle 
sideslip was improved. (This is further 
discussed below.) 

(2) The distribution of force across the 
width of the muscle was treated: allowing 
the model to reflect the fact that as a 
muscle bends sideways (i.e. in the plane of 
its length and width) the point at which 
the distributed force may be thought to act 
(the effective insertion) moves toward the 
stretched edge. 

(3) Translation of the eye in the orbit 
was treated. Translation is important both 
as an output variable (e.g. in certain dis­
orders retraction is a diagnostic sign), 
and because of its influence on orbital 
geometry and, so, on eye rotation. 

Of the data that would further refine and test 
the SQUINT model, we believe that measure-
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ments of muscle paths are the most important. 
The action of each muscle is considered as the 
product of a scalar muscle force F and a unit 
moment vector m; F determines the magnitude 
of a muscle's effect on the eye, while m deter­
mines the direction of its pull (m is the axis 
about which a muscle tends to rotate the eye). 
While both must be known in a quantitatively 
correct model, if the m vectors are not known, 
the model will not even be qualitatively correct. 

Each m vector is determined by the origin of 
the muscle, 0, the point of tangency of the 
muscle with the globe, T, and the center of 
rotation of the globe, C (see Fig. 1). 

Since the muscle is firmly attached to the 
globe only at the insertion, the point of tan­
gency depends on the path taken by the muscle 
as it leaves the insertion. In primary position all 
of the muscles insert into the globe beyond the 
center of rotation. As the globe rotates to 
arbitrary positions, then, we expect the muscles 
to slip sideways with respect to the globe (see 
Fig. 1). The horizontal recti, for instance, 
should slip upwards as the eye elevates and 
downwards the eye depresses. If sideslip were 
unrestrained, a muscle would simply take the 
shortest path on the globe (a great circle) from 
insertion to point of tangency (Fig. 2). Early 
analyses by Krewson ( 1950) and Boeder ( 1962) 
assumed that this was the case. However, a 
complex arrangement of el�stic connective 
tissue surrounds the muscles and couples them 
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Fig. I. Unit moment vector. A left eye in primary position is shown schematically, with only the lateral 
rectus muscle. A left-handed Cartesian coordinate system X-Y -Z is defined, with origin C at the center 
of rotation, X pointing laterally, and Y pointing straight ahead. The unit moment vector m is determined 
by the muscle origin 0, the point of tangency T, and the center of rotation C. Sideslip, expected to occur 

as the eye rotates, would move T on the surface of the globe, as suggested by the arrows. 

to each other and to the orbital walls (see 
Koornneef, 1983). We would expect globe­
relative sideslip to be reduced by the heavy 
intermuscular membranes that form a sort of 
"cap" anterior to the equator of the globe. 

Our model of muscle sideslip has previously 
been described in detail (Miller and Robinson, 
1984). Briefly, we suppose the various fascial 
connections to the muscles act mainly as elastic 
attachments to the globe along the arc of con-
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Fig. 2. Possible muscle paths. A lateral rectus is shown schematically, with the eye in elevation. We assume 
that the muscle's path from the origin 0 to the point of tangency T is a straight line. For any gaze position, 
then, we can then draw a "circle of tangency" on the globe. Because only R and 0 are fixed, T will fall 
at some unknown point on the circle of tangency. The "shortest path" (a great circle), would be taken 
by a muscle free to sideslip with respect to the globe without restraint; the point of tangency would fall 
at Tsp· A muscle almost entirely unable to sideslip because of intermuscular membranes would remain 
on the "primary position path" through most of its contact with the globe, leaving, perhaps, at T PP. The 

actual muscle path lies between these two extremes, as does the actual· point of tangency TAP. 
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tact. These fascial "springs" tend to hold the 
muscle to its primary position path and reduce 
globe-relative sideslip. As the eye rotates out of 
primary position the muscle may (depending on 
the direction of rotation and the muscle tension) 
be pulled sideways off its primary position path. 
Since only the point of tangency (and not the 
precise shape of the path from insertion to point 
of tangency) is mechanically important, we as­
sumed a simple circular shape for the arc of 
contact. From each muscle's force and the 
geometry of its path, we compute the force 
tending to slip the muscle sideways on the globe. 
We suppose that the fascial springs stiffen as 
they stretch according to a two-parameter 
exponential equation (Miller and Robinson, 
1984, equation 15). 

Although there is extensive data describing 
the fixed orbital contents, based on dissection 
and serial sectioning of cadaver orbits (Volk­
man, 1869; Nakagawa, 1965; Koornneef, 1983), 
the need for descriptions with the eye in various 
gaze positions has not been widely recognized. 
Our modeling efforts have made this need ap­
parent. It might be thought that these data 
could be obtained by manipulation of fresh 
cadaver orbits. However, muscle paths depend 
on muscle tension (Miller and Robinson, 1984), 
and such data can only be obtained from 
an awake subject executing voluntary eye 
movements. 

The purpose of this study, then, was to pro­
vide some data on the paths of extraocular 
muscles in a physiologic situation. Specifically, 
we sought to visualize the lateral rectus muscle 
as a trained monkey fixed various known 
positions. 

It is useful to measure sideslip in two refer­
ence frames: 

( 1) As sideways movement of the point 
of tangency T relative to the orbit. If T 
were fixed in the orbit, for instance, each 
muscle plane would be fixed as well. The 
intuitive understanding of muscle action 
would be greatly simplified. (This assumes 
that globe translations are small, and that 
the path from T to the origin 0 does not 
change shape.) Also, neural control eye 
position might be simplified if muscle 
actions did not change with eye position. 

(2) As sideways movement of the point 
of tangency T relative to the globe. Orbital 
anatomy suggests that fascial connections 
mainly couple each muscle to the globe, 

rather than to the orbit. The elasticity of 
these connections, therefore, should be 
strongly related to globe-relative displace­
ment (see Miller and Robinson, 1984). 

In order to analyze the data of the present 
study, certain aspects of monkey orbital ge­
ometry must be known. However, we will ob­
tain a more complete description than is neces­
sary for this purpose, because of its general 
value in computer modeling studies of monkey 
orbital statics. 

METHODS 

Subjects and preparation 

Two male juvenile monkeys were used in the 
X-ray studies: one M. radiata and one M. 
fascicularis. 

Under aseptic conditions and surgical anes­
thesia, each monkey was fitted with a head 
plate, and a scleral search coil. The coil was 
implanted in the right eye using a method that 
does not tend to induce strabismus (Judge et al., 
1980). 

Taking care to minimize damage to inter­
muscular membranes, radio-opaque markers 
were implanted in the left lateral rectus of each 
monkey. In one monkey (the M.fascicularis) we 
tied knots using 5-0 multifilament stainless steel 
suture. In the other (the M. radiaia) we im­
planted fine lead wire. The superior and inferior 
margins of the muscle were marked at the 
insertion and at several points posterior, as far 
back into the orbit as could be reached without 
having to dissect the muscle from its attach­
ments. The two markers at the insertion served 
as reference points on the globe, and the remain­
ing markers to delineate the muscle path. It 
would have been convenient to implant ad­
ditional markers in the globe, specifically, under 
the belly of the LR, but this could not be done 
without significant damage to the intermuscular 
membranes. Sutures under the muscle would 
also be expected to cause scarring between the 
globe and the muscle. Either of these artifacts 
might have seriously affected the results. 

When healing was complete, the monkeys 
were trained to fix red LED's at each of 9 
"diagnostic positions of gaze" in a square 
± 25 deg horizontally and vertically. 

X -ray images 

By visual inspection of the corneal reflex 
(Hirshberg test) we determined that each 
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monkey was orthophoric. (This method would 
be expected to detect misalignments as small as 
about 5 deg.) A portable X-ray machine was 
positioned 183 em in front of the marked left 
lateral rectus muscle, with the skull in lateral 
view. An X-ray film cassette was placed so that 
the film was 2.5 em behind the marked muscle, 
allowing the resulting X-ray image to be consid­
ered a parallel projection into the sagittal plane. 
A notched metal strip was placed in the plane of 
the marked muscle to calibrate length measure­
ments in the X-ray image. Each LED was lit in 
turn, and an X-ray exposure taken while the 
monkey held fixation, as verified by means of 
the search coil in the right eye. If fixation was 
lost around the time of an X-ray exposure, the 
exposure was repeated. 

Orbital geometry 

Four eyes of juvenile monkeys (one M. 
radiata and three M. mulata) were dissected and 
measured in a stereotaxic instrument. 

The heads were mounted in the usual way 
with ear-bars, and an orbital rim and palate 
clamp. The roof and temporal wall of the orbit 
were carefully removed using a bone saw and 
rongeurs. The globe was injected with normal 
saline, as needed, to retain its shape. A stiff wire 
pointer was attached to a three-axis micro­
manipulator on a carriage, which rode on the 
stereotaxic rails. This pointer was used to 
measure the coordinates of the origins and 
insertions of the muscles, and of points on the 
surface of the globe. Muscle and tendon lengths 
were determined with the tissues hydrated with 
normal saline and laid flat on a glass surface. 
Muscle cross-sections were estimated by weigh­
ing each muscle (without the tendon) and divid­
ing by the product of its length and the density 
of muscle tissue ( 1  gjcm3). 

Calculation of sideslip 

Sideslip was calculated as the sideways move­
ment of the point of tangency T ( 1) relative to 
the orbit, and (2) relative to the globe. 

T was the mechanically important point 
for determining muscle action. Therefore, we 
measured sideslip as the sideways movement of 
T rather than of some fixed point on the muscle 
(a different point on the muscle was tangent 
to the globe in different eye positions). We 
calculated orbit-relative sideslip first, and from 
it, calculated globe-relative sideslip. 

Figure 3(A) shows the measurement of orbit­
relative sideslip. 

( 1) The midpoint of the line joining the two 
insertional sutures was taken as the "point 
insertion" R; its projection in the plane of the 
X-ray was called [R]. A curve was hand-drawn 
from [R] down the middle of the muscle, using 
the 2 rows of sutures as a guide. The projected 
point of tangency [T] fell on this curve. 

(2) To find the projected point of tangency [T] 
on this curve, we assumed that the muscle took 
a straight path from its origin to T, and that the 
globe was a sphere that rotated about its center. 
From the mean globe radius, and the coordi­
nates of the origin and insertion of the LR 
(Table 1), we calculated that [T] fell 8.4 mm 
posterior to [R], for primary position gaze 
[Fig. 3(B)]. 

(3) The anterior-posterior location of [T] 
would have been independent of gaze and side­
slip if the plane of the X-ray had been parallel 
to the axis of the orbital cone (we would have 
been looking "edge-on" at the circle of tangency 
of the LR with the globe; see Fig. 2). However, 
the X-ray image was sagittal, so that the 
horizontal location of [T] was a function of 
orbit-relative sideslip. (As the muscle slipped 
upwards, for instance, [T] moved anteriorly.) 
Because orbit-relative sideslip was small, and 
the image of the posterior portion of the marked 
muscle (more precisely, the line segments joining 
the bisectors of the noninsertional suture pairs) 
was close to horizontal in all gaze positions, this 
effect was very small. For instance, if [T] moved 
3 mm upwards, it would have also moved 
0.3 mm anterior. With respect to the vertical 
position of [T] calculated in paragraph "2", 
above, this would produce an error of less than 
0.05 mm. We considered this negligible. 

(4) The head restraint was sharply defined in 
the X-ray and provided convenient landmarks 
for constructing the orbital reference. Figure 
3(A) shows the line we used as the orbital 
reference. In each X-ray we measured the per­
pendicular distance from [T] to this line. 

(5) When the eye was in primary position, we 
took sideslip to be zero. Subtracting this dis­
tance from each of the 9 measurements gave 
the "projected orbit-relative sideslip" values. 
Because the magnitude of orbit-relative LR 
sideslip was small, projection distortion was 
negligible. 

To transform orbit-relative sideslip, calcu­
lated above, to globe-relative sideslip, we found 
the vector t describing point T in an orbit-fixed 
Cartesian coordinate system with the origin at 
the center of rotation. The coordinate trans-
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Fig. 3. Measuring orbit-relative sideslip. (A) In this X-ray image of the eye in primary position, the 2 rows 
of implanted sutures can be seen as small white knots. The two insertional sutures are connected by a 
short, straight construction line, the center of which is the projection of the insertion [R]. The curved 
construction line marks the middle of the muscle, along which the projected point of tangency [T] is found 
(see text). The orbital reference is a horizontal line, drawn with reference to the head restraint. The search 
coil used to measure eye position can be seen just anterior to the insertional sutures. (B) A horizontal 
section through the left eye and lateral rectus is shown schematically, as viewed from above, with the eye 
in primary position. Coordinates of the origin 0 and insertion R, as well as the mean globe radius, are 
taken from Table I. The projections into the plane of the X-ray image of the insertion [R] and the point 

of tangency [T] are separated horizontally by 8.4 mm. 
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formation for a Fick coordinate system is given 
by 

cos e ·cos rjJ sin <P 0 sine sin rjJ ·cos e 
+sin rjJ ·sin <P ·sine -sine ·cos rjJ ·sin <P 

A= sin rjJ 0 sin <P 0 cos e cos <P ·cos e -sin rjJ ·sine (I) 
-sine ·cos rjJ -cos e ·cos rjJ ·sin <P 

-sin rjJ ·cos <P sin¢ cos rjJ ·cos <P 

where e, ¢, and rjJ are the horizontal, vertical, 
and torsional components of eye position. 
Denoting the transformed values with primes, 
we have 

t' =A -'·t. (2) 

The z' component of t' was taken as "sideslip 
relative to the globe". 

Adjustment for scarring 

As we expected, the implanted sutures and the 
surgical procedure itself caused some scarring. 
To evaluate the effect of this on sideslip, we 
measured the sideslip stiffness of an LR with 
implanted sutures, and compared it to the 
stiffness of the fellow LR, which had not been 
previously disturbed. 

We could not use an animal with an im­
planted search coil for this purpose, since it 
would not have an undisturbed LR for com­
parison. We, therefore, prepared an M. mulata 
with EOG electrodes implanted in the peri­
orbital bone, planning to run it in the main 
experiment as well. Unfortunately, instability of 
the electrodes made this latter impossible. 
Therefore, this animal was used only for 
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measurement of sideslip stiffness. The stiffness 
measurements were made just prior to 
sacrificing the animal, under deep pentobarbital 
anesthesia. 

(I) A bilateral lateral orbitotomy was per­
formed, disturbing the orbital contents as little 
as possible. 

(2) With each eye held in primary position 
with forceps, a suture was tied around the LR 
at its point of tangency, as determined visually. 

(3) With the eye still held in primary position, 
each suture was grasped with ultrasonic length­
tension forceps (Collins, 1976), and the stiffness 
to sideways movement was measured by making 
several pulls superiorly and inferiorly. This in­
strument was calibrated to an accuracy of ± I% 
in force and ± 3% in displacement. Misalign­
ment of the forceps would result in under­
estimation of stiffness, however, they are not 
sensitive to small misalignments and, unlike the 
case in which these forceps are used to measure 
rotational stiffness of the eye, proper alignment 
was easy to maintain. 

(4) Offsets in force and displacement, from 
one "pull" to the next, are not well controlled 
with hand-held length-tension forceps. There-

B. Control Muscle 
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Fig. 4. LR sideslip stiffness. Individual data points are shown along with best-fitting 3rd-order polynomial 
· curves. Data sets resulting from each "pull" were adjusted to align the inflection points before the curve 

was fitted. (A) Marked muscle; data from 6 pulls (r = 0.98). (B) Control muscle; data from 3 pulls 
(r = 0.98). 
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fore, for each of the experimental and control 
data sets, the data from multiple pulls were 
aligned by making their points of inflection 
coincide, and a third-order polynomial was 
fitted. Figure 4(A) shows the stiffness of the LR 
marked with stainless steel sutures, and Fig. 
4(8) that of the LR in the eye not previously 
disturbed. Comparison of Fig. 4(A) and (B) 
shows that the surgery stiffened the inter­
muscular tissues slightly. 

(5) To correct for this surgical artifact, the 
sideslipping force was found from Fig. 4(A) for 
each globe-relative sideslip (displacement) value 
computed above. Then, using Fig. 4(8), the 
displacement of a normal muscle was found for 
that force. (This calculation is indicated in Fig. 
4.) These corrected globe-relative sideslip values 
are given in Table 3. 

(6) These corrections to the position of T in 
space were directly applied to the orbit-relative 
sideslip values. These are given in Table 4. 

RESULTS 

Monkey orbital geometry 

Table I gives the mean values of the orbital 
parameters we measured, along with their stan­
dard deviations (a"_1 ) . 

Differences between measurements on the 
two species (M. radiata and M. mulata) were 
not greater than within-species differences. 
However, since no M. fascicularis eyes were 
measured, generalization of the results to this 
species is uncertain. 

We are less confident of certain values in 
Table I than of others. The insertions of the 
IR and 10 were difficult to visualize without 
moving the globe and, thus, disturbing the 
measurement. The standard deviations of these 
values tend to reflect this difficulty. Secondly, 
the separation of muscle from tendon was some­
what arbitrary, since the fleshy tissue does not 
always end sharply. The sum of muscle length 

Table I. Monkey ocular geometry 

Muscle 
Parameter LR MR SR IR so 10 

Origin (mm) 
X -9.2 -12.0 -10.8 -11.2 -9.7 -5.8 

(0.6) (1.3) (1.9) ( l . l )  (1.3) (1.3) 

y -19.8 -19.6 -19.4 -18.6 7.5 5.2 
(1.2) (2.6) (1.0) (1.6) (2.7) (1.4) 

z -6.2 -5.6 -4.0 -8.1 6.8 -11.6 
(0.9) (1.1) (1.4) (0.2) (0.8) (1.1) 

Insertion (mm) 
X 9.1 -9.4 2.1 1.4 1.6 3.4 

(0.5) (0.7) (1.0) (1.9) (0.9) (3.8) 

y 1.2 2.6 2.0 3.1 -4.3 -7.8 
(0.8) (1.2) (0.4) (1.6) (0.7) (0.9) 

z -0.4 0.1 8.2 -8.3 8.2 -0.8 
(1.0) (0.3) (0.6) (0.6) (0.5) (1.7) 

Direct 25.8 
length (mm) (1.7) 

Muscle 17.7 19.0 19.9 18.9 15.7 17.3 
length (mm) (0.4) (2.1) (2.8) (2.2) (2.1) (2.6) 

Adjusted muscle 19.7 20.0 21.9 17.9 15.0 18.5 
length (mm) 

Tendon 7.0 0.5 4.0 5.0 25.8 0.0 
length (mm) (2.8) (0.7) (0.5) (1.4) (4.3) (0.0) 

Muscle width 5.9 6.2 5.0 4.5 4.9 6.2 
at insert (mm) (1.1) (1.9) (1.2) (1.0) (1.2) (2.2) 

Muscle cross 10.4 8.9 6.1 7.8 4.8 6.3 
section (mm2) (0.5) (1.8) (0.5) (1.4) (0.6) (0.8) 

Mean globe 9.3 
radius (mm) (0.5) 

Values are derived from quantitative dissection of 4 monkey eyes: l M. radial a and 3 M. mulatas. Below each mean 
value is the standard deviation (u._1 ) in parentheses. For each muscle (LR, MR, SR, IR, SO, and 10) the 
positions of the origin and insertion are given in the Cartesian coordinate system of Fig. I. For the SO, the 
mechanically-effective origin (at the trochlea) and the distance between the trochlea and the anatomic origin 
(direct length) are given. Muscle length is exclusive of tendon. Adjusted muscle length is derived from muscle 
length, as explained in the text. Muscle cross section is the weight of the muscle (without tendon) divided by the 
product of its length and density. 
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Table 2. Muscle unit moment vectors in primary position 

Muscle 
Species Component LR MR SR IR so IO 

m, (depression) 0.09 0.06 -0.88 0.87 0.71 -0.88 
Monkey m, (intorsion) -0.33 0.24 0.46 -0.50 0.67 -0.41 

m, (abduction) 0.94 -0.97 0.11 -0.04 0.22 0.24 

m, (depression) -0.02 -0.01 -0.87 0.85 0.59 -0.63 
Human m" (intorsion) 0.02 -0.01 0.41 -0.41 0.79 -0.76 

m, (abduction) 1.00 -1.00 -0.29 -0.32 0.16 -0.14 

The components of m are given in the coordinate system of Fig. I, as calculated from the 
data of Table I for the monkey, and from the data given by Miller and Robinson (1984, 
Table I) for the human. 

and tendon length is probably more reliable 
than either value separately. Finally, our calcu­
lation of muscle cross-section is somewhat arbi­
trary. Instead of measuring mean cross-section, 
for instance, we might have measured maximum 
cross-section. It is not clear which is the best 
measure of muscle strength. 

If we replace each pair of tendon and muscle 
length measurements with its sum, then (except 
for a weak dependence of the muscle cross­
section measurement on the muscle length 
measurement), the values in Table I are inde­
pendent of each other. It is therefore possible 
that, because of experimental error, these values 
are not consistent. To find out, we calculated the 
degree of stretch of each muscle in primary 
position, given the geometry implied by Table I. 
We took account of the globe translation that 
must be expected when the muscles are inner­
vated, which the SQUINT model predicts to be 
0.27 mm nasally and 0. 19 mm inferiorly. We 
reasoned that stretch, as a fraction of resting 
muscle length, would be similar for all the 
muscles, since muscle tissue tends to elongate. 
or shorten if chronically stretched or slackened, 
respectively (Goldspink, 1985; Williams and 
Goldspink, 1984). The model sho�ed primary 
position stretches from 5% (for the IR) to 24% 
(for the LR). We chose to adjust the "muscle 
length" values to force consistency, and did so 
to produce 10--12% stretch in each muscle in 
primary position. The resulting "adjusted mus­
cle length" values are given in Table I. In no 
case do they differ more than 2 mm from the 
measured values. 

The unit moment vector m for the monkey 
eye in primary position may be calculated for 
each muscle from the data of Table l .  These 
values are given in Table 2, along with the 
comparable values for the human eye, based on 
the human anatomic data given in Miller and 
Robinson (1984). 

Unit moment vectors for the eye in primary 
position were calculated as the negative (be­
cause of the left-handed coordinate system) 
cross product of the vector from C to R with 
that from C to 0 (see Fig. 1). Globe translation 
caused by muscle forces was taken into account 
for the monkey as described above, and for the 
human (translations of 0.4 1 mm nasally and 
0.43 mm posteriorly). 

Sideslip relative to the globe 

The mean values of globe-relative sideslip are 
given in Table 3. On average, a vertical eye 

Table 3. Sideslip relative to the globe 

AD AB 
-25° oo +25° 

Up +25° 2.2 2.4 2.8 
(0.1) (0.4) (I. I) 

oo -1.3 0.0 1.3 
(0.0) (1.3) 

Down -25° -3.4 -2.7 -1.8 
(0.4) (0.6) (1.2) 

Values are derived from two monkeys: I M. radiata and I 
M. fascicularis. Below each mean value is the standard 
deviation (an-I) in parentheses. Positive sideslip is up­
ward; negative downward (mm). The nine sideslip values 
are for the nine gaze positions shown (deg). Sideslip in 
primary position is taken to be 0. 

Table 4. Sideslip relative to the orbit 

AD AB 
-25° oo +25° 

Up +25° -1.6 -0.8 0.3 
(0.2) (0.5) (1.2) 

oo -1.3 0.0 1.3 
(0.0) (1.3) 

Down -25° 0.2 0.5 0.9 
(0.4) (0.6) (1.3) 

Values are derived from two monkeys: I M. radiata and 
I M. fascicularis. Below each mean value is the standard 
deviation (an-I ) in parentheses. Positive sideslip is up­
ward; negative downward (mm). The nine sideslip values 
are for the nine gaze positions shown (deg). Sideslip in 
primary position is taken to be 0. 
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movement from -25 to + 25 deg is accom­
panied by 5. 1 mm of vertical sideslip relative to 
the globe (t[ l ] = 48. 1; P < 0.0 1, 1-tail). Sideslip 
is greatest (5.6 mm) if the eye moves from 
depression to elevation in adduction, less 
(5. 1 mm) if it moves from straight down to 
straight up, and least (4.6 mm) if it elevates in 
abduction. The dependence of globe-relative 
sideslip on horizontal eye position is weak, 
but statistically significant (F[2,2] = 12 1.0; 
P < 0.0 1). The differences between sideslip on 
elevation compared to depression are not 
consistent. 

We can compare these measurements with the 
sideslip expected on the basis of the "shortest 
path" hypothesis (see Fig. 2). In abduction we 
would expect 3.4 mm of vertical sideslip, which 
is not significantly different from the 4.6 mm we 
measured. As the eye moves straight up and 
down we would expect 5.0 mm of sideslip, also 
not significantly different from the 5. 1 mm 
measured. In adduction, however, when the arc 
of contact of the LR with the globe is large, the 
shortest path hypothesis predicts 7.3 mm of 
sideslip, while we measure only 5.6 mm 
(t[I] = 12.36; P < 0.05, 1-tail). 

Sideslip relative to the orbit 

The mean values of orbit-relative sideslip are 
given in Table 4. It can be seen that in elevation 
the. point of tangency moves down slightly, 
while in depression (in 2 out of 3 cases) it moves 
up. This perhaps unexpected direction of move­
ment will be discussed below. Summing across 
horizontal eye positions, mean orbit-relative 
sideslip of - 1.2 mm was measured (t[ l ]  = 12.2; 
P < 0.05, !-tail). 

The main point to notice about orbit-relative 
sideslip, however, is that it is minimal: no more 
than 1.8 mm for a 50 deg vertical movement. 

CONCLUSIONS 

Stability of muscle planes 

Our results show that the point of tangency T 
of the LR does not move much in a vertical 
direction, relative to the orbit. If the center of 
rotation of the globe is assumed fixed, this 
implies that all 3 coordinates of T are approxi­
mately stationary in the orbit, and that the unit 
moment vector m is approximately fixed as well. 

This conclusion supports the usefulness (at 
least for roughly understanding muscle actions) 
of the notion that muscle planes are fixed in the 

orbit (e.g. Scott, 1983). Thus, for instance, as 
the eye elevates, one can appreciate that the LR 
develops an intorting action (simply because of 
the reorientation of the visual axis, about which 
torsion is defined), without the complication of 
considering an emergent vertical action. 

The cooperative action that a pair of antago­
nistic muscles might develop in certain gaze 
positions is called a "bridle effect" (Robinson, 
1975). For example, the horizontal recti might 
become elevators in upgaze (or depressors in 
downgaze). This would occur because their 
points of tangency T had slipped up (or down) 
relative to the orbit. The existence of a bridle 
effect would seem to make the brainstem's task 
of oculomotor control very difficult, leading 
some to propose that other effects cancel it. 
France and Burbank ( 1979) for instance, sug­
gest that the nonuniform distribution of tension 
across the width of the muscle displaces the 
effective insertion enough to cancel the bridle 
force. The present results suggest that there is no 
bridle force to cancel. 

Although we must be cautious in generalizing 
this finding to humans and to muscles other 
than the LR, Simonsz ( 1985) has found support­
ing evidence in human CT scans that all four 
recti remain approximately fixed in orbit. 

There is no evidence concerning the stability 
of the planes of the oblique muscles. 

Muscle actions 

The geometric data of Table I are substan­
tially different from the comparable human data 
(see, e.g. Miller and Robinson, 1984). 

If we take the mean origin of the rectus 
muscles to define the orbital apex, we can make 
the following calculations. Although the di­
ameter of the monkey globe is 75% that of the 
human, the distance between the globe center 
and the orbital apex is only 65% that of the 
human, making the monkey orbit relatively 
shorter. The monkey orbital axis points 28 deg 
outward compared to 26 deg outward in the 
human, and 15 deg upward compared to I deg 
downward in the human. The angular arcs of 
contact of the muscles with the globe in primary 
position are quite different. Mechanically, the 
most important difference is that the monkey 
medial rectus has only a 9 deg arc of contact, 
compared to 35 deg in the human. Nevertheless, 
monkeys have at least a ± 40 deg oculomotor 
range (horizontally and vertically), and it is 
something of a mystery how the MR, a muscle 
of moderate cross-section, can lose tangency at 
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9 deg of adduction and still adduct the eye so 
effectively. 

The differences between the geometry of mon­
key and human eyes are sufficient to produce 
some qualitative differences in primary position 
muscle actions. Each component of m given in 
the Table 2 may be understood as the fraction 
of the muscle's force acting about the com­
ponent axis. Thus, it is seen that monkey hori­
zontal recti have a substantial torsional action 
(my), while human horizontal recti do not. 
Monkey vertical recti lack the adducting action 
found in the human (mJ. Finally, mx is larger in 
absolute value than mY for both the superior and 
inferior obliques in monkey. This means that for 
a monkey eye in primary position, the obliques 
have more vertical than torsional action. 

Mechanical determinants of sideslip 

Sideslip is determined by (I) muscle tension, 
(2) forces exerted by intermuscular attachments, 
and (3) forces exerted by muscular-orbital at­
tachments. The SQUINT model assumes the 
last of these to be negligible. Koornneef (see 
Koornneef, 1983), however, has carefully sec­
tioned fixed human orbits to demonstrate the 
existence of fascial sheets connecting the mus­
cles with the bony orbit as well as with each 
other. If the muscular-orbital coupling were 
stiffer than the intermuscular coupling, it might 
explain our observation that the LR point of 
tangency tends to be stationary with respect to 
the orbit. Unfortunately, Koornneef 's studies 
were purely anatomical and do not describe the 
mechanical properties of the various fascial 
sheets. Observations during our monkey dis­
sections and during human strabismus surgery, 
however, suggest that the major coupling is 
intermusclar. Also, if muscular-orbital coupling 
was dominant, the tendency of T to move up 
with respect to the orbit as the eye looks down, 
and down as the eye moves up, would be hard 
to explain. That is, muscle tension would tend 
to make the muscle take the shortest path, and 
muscular-orbital attachments could only re­
duce, but not reverse, this tendency. 

We propose, then, to explain our results as 
due to the sum of two forces: (I) muscle tension, 
and (2) the forces exerted by intermuscular 
attachments. 

Muscle tension tends to cause the muscle to 
sideslip relative to the globe. In elevation, for 
example, the LR tends to slip upward, toward 
the shortest path across the globe. Inter­
muscular attachments, on the other hand, tend 

to reduce globe-relative sideslip by effectively 
coupling the muscles to the globe. Because T lies 
posterior to the center of rotation [see Figs 2 
and 3( 8)], it is possible for T to move opposite 
to the direction of rotation. In elevation, for 
example, T tends to move down (see Table 4). 

Perhaps, then, the relative stability of T with 
respect to the orbit is due to the balancing of 
these two forces. Coupling of the muscles to the 
orbit might further stabilize them. 

Acknowledgements-The authors thank Drs Edward Keller 
and William Crandall for the use of their animal surgical 
and testing facilities, Mr Charles Clay and his staff at the 
Pacific Presbyterian Medical Center Department of Radiol­
ogy for the X-ray images, and Dr Alan Scott for his help 
with ocular surgery. This study was supported by Grant 
EY04565 from the National Eye Institute, National Insti­
tute of Health, Bethesda, Maryland, and by the Smith­
Kettlewell Eye Research Foundation. 

REFERENCES 

Boeder P. (1962) Co-operative action of extraocular 
muscles. Br. J. Ophthal. 46, 397-403. 

Collins C. C. (1976) Length-tension recording strabismus 
forceps. In Smith-Kettlewell Symposium on Basic Sciences 

in Strabismus. Proceedings of the V Congress (Annex) of 

the Conselho Latina-Americana de Estrabismo, Guaruja, 
Brazil, pp. 7-19. 

Collins C. C., Carlson M., Scott A. B. and Jampolsky A. 
(1981) Extraocular muscle forces in normal human 
subjects. Invest. Ophthal. visual Sci. 20, 652-664. 

Collins C. C., Scott A. B. and O'Meara D. M. (1969) 
Elements of the peripheral oculomotor apparatus. Am. J. 

Optom. 46, 510--515. 
France T. D. and Burbank D. P. (1979) Clinical applications 

of a computer-assisted eye model. Trans. Am. Acad. 

Ophthal. Otolar. 86, 1407-1412. 
Goldspink G. (1985) Malleability of the motor system: a 

comparative approach. J. exp. Bioi. 115, 375-391. 
Judge S. J., Richmond B. J. and Chu F. C. (1980) Im­

plantation of magnetic search coils for measurement of 
eye position: an improved method. Vision Res. 20, 

535-538. 
Koornneef L. (1983) Orbital Connective Tissue. Chap. 32 in 

Vol. I of Duane T. D. and Jaeger E. A. Biomedical 

Foundations of Ophthalmology. Harper & Row, Philadel­
phia, Pa. 

Krewson W. E. (1950) The action of the extraocular mus­
cles; a method of vector analysis with computations. 
Trans. Am. aphtha!. Soc. 48, 443-486. 

Miller J. M. and Robinson D. A. (1984) A model of the 
mechanics of binocular alignment. Comput. Biomed. Res. 

17, 436-470. 
Nakagawa T. (1965) Topographic anatomical studies on the 

orbit and its contents. Acta soc. ophth.jap. 69, 2155-2179. 
Robinson D. A. (1975) A quantitative analysis of extra­

ocular muscle cooperation and squint. Invest. Ophthal. 14, 

801-825. 
Robinson D. A., O'Meara D. M., Scott A. B. et at. (1969) 



392 JOEL M. MILLER and DAVID ROBINS 

Mechanical components of human eye movements. J. 

appl. Physiol. 26, 548-553. 
Scott A. B. (1983) Ocular motility. In Biomedical 

Foundations of Ophthalmology, Chap. 23. Harper & Row, 
Philadelphia, Pa. 

Simonsz H. J., Harting F., de Wall B. J. and Verbeeten 

B. W. (1985) Sideways displacement and curved path of 
recti eye muscles. Archs Ophtha/. 103, 124-128. 

Volkmann A. W. (1869) On the mechanics of the eye 
muscles. Ber. Verh. Sachs. Ges. Wsch. 21, 28-69. 

Williams P. E. and Goldspink G. (1984) Connective tissue 
changes in immobilised muscle. J. Anal. 138, 343-350. 


