
 LabOS
Closed-loop, Protocol-driven,

Data Acquisition & Control
for Biomedical Experiments

July 2006

Joel M Miller, PhD
Martin Wiesmair, DI(FH)

Eidactics
San Francisco

Supported by NIH/NIBIB R41 EB006219 to JMM

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

Problems

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

Problems of Data Acquisition & Control (1/2)

Input-Output Coupling Problem (”control” experimental devices)

Reliably sample multiple channels

Refresh displays & produce other outputs

Coordinate input & output
loose coordination – “triggering”, “synchronization”
closed-loop control – input determines output, on a sample-by-sample basis

Experimental Protocol Problem (”control” the course of the
experiment)

A protocol is the plan for the course of an experiment

Complex experiments, particularly those with living subjects, may
require multi-phased, data-contingent protocols

Simple processing pipelines cannot provide this flexibility
State machines provide natural descriptions of multi-phase experiments

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

Problems of Data Acquisition & Control (2/2)

Operator Interaction Problem
Experimental data must be promptly displayed in useful forms

Operator must have adequate control of the experiment, and
See experimental data as it is collected
Requirements of a rich, interactive operator interface tend to be incompatible
with deterministic data acquisition & control

Flexibility Problem
Innovative experiments may require protocols unanticipated by vendor
“solutions”

Complex protocols must be easily developable by experimenters,
without complex programming, in response to experience, and
changing needs

A wide range of standard hardware should work with the basic system

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

Input-Output Problem example:
Oculomotor Physiology

Realtime data acquisition
eye position ~ 6 channels, 16 bits @ 500 Hz

muscle force ~ 4 channels, 16 bits @ 1 KHz

motor neuron spike profiles ~ 4 channels, 12 bits @ 50 KHz

subject response switches ~ 1 digital input port (8 lines)

Generation of stimuli & other control signals, contingent on
incoming data

LED visual stimulus array ~ 4 digital output ports (32 lines)

Reward pump, tone generator, light intensities ~ 6 analog outputs

➡ A demanding set of tasks for a single lab computer!

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

“Loose-Coupling” Approach to the I-O Problem

1. Separate input & output computers
One computer for sampling

A second computer for stimulus generation & other outputs

Input & output computers are loosely coupled (eg: ethernet, GPIB)

2. A single computer with dedicated input & output devices
streaming input data to, or output data from, memory or disk

Boards using buffered input and output

Stand-alone devices connected to computer ports

➡ These solutions are only suitable where simple interactions
like “triggering” & “synchronization” provide sufficient
coordination between inputs & outputs
Closed-loop control is impossible

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

Specialized Solutions to the I-O Coupling Problem

Based on DSP (digital signal processor) chips, rather than
general purpose processors

High speed sampling and filtering

Limited hardware choices

Specialized software applications

Targeted (limited) programability

➡ Such specialized systems
May be the best solutions for some applications

But tend to restrict labs to experiments that they were designed to
support

LabOS Solution

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

LabOS Solution to the I-O Coupling Problem

Two computers configured, not for input & output, respectively . . .

Data Acquisition system (input)
& Experiment Control

Analog & Digital outputs

Triggering & Synchronization
(loose coupling of input & output)

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

LabOS Solution to the Input-Output Problem (1/2)

Two computers configured, not for input & output, respectively . . .
but for the differing needs of a human operator & a realtime experiment

T
C

P

Operator’s
Console

Data Acquisition (analog & digital inputs),
Analog & Digital output
& Experiment Control integrated in a
realtime processor

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

LabOS Solution to the Input-Output Problem (2/2)

Operator’s Console
Provides a rich, interactive
interface to the ongoing
experiment

Responds promptly, as perceived
by a human operator

Experiment Server-Controller
Provides deterministic protocol-
based control of the experiment

Integrates input & output

Responds on experiment’s time
scale

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

LabOS Operator’s Console

General purpose, multitasking
Macintosh, Windows or other
computer

Responds on the Operator’s time scale
of ~100 ms to:

Implement Operator requests
Show experimental data & events

Provides multitasking access to 3rd
party applications during experiment

Multiple consoles can observe
ongoing experiment

TCP

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

LabOS Experiment Server-Controller

A general purpose processor running a
realtime operating system (RTOS)

Ardence PharLap ETS (National Instruments
LabVIEW RT module) on a Pentium 4

Deterministic response
on the experiment’s time scale:

 Closed-loop control at ~1 KHz
All inputs are sampled and calibrated
Operator requests are read & responded
Protocol machine states are run
All outputs are produced

Buffered Analog data sampled at ~50 KHz

Timing resolution = 1 µs

RT
Processor

PXI: AD, DA, DIO

SCXI: Signal
Conditioners

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

LabOS Solution to the Protocol Problem

Complex experimental protocols are naturally expressed as a
state machine, whose states correspond to meaningful phases
of the experiment, eg:

“Present next target”
“Wait for eye to leave fixation window on a saccade”

States consist of protocol modules, which
Perform small, meaningful operations
Are parameterized in calibrated, real-world units, eg:

Saccade detector specifies eye velocities in deg/s
Fluid rewards are specified in µl

Are programmed in a general-purpose language
Are refined and reused
Egs: “Detect beginning of saccade”, “Is eye in window?”

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

LabOS Solution to the
Operator Interaction Problem

Information-rich, task-oriented, Experimenter’s Console
Single control Console

Multiple viewing consoles connected to experiment by Internet

Modular control panels and viewers for new experiments

Current and saved data shown in same viewers

Use external applications for off-line data manipulation

Experimenter-modifiable Protocols run in Experiment
Controller

Parameterized, modular experimental protocols

Reusable modules, well-defined in experimenter’s terms

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

LabOS Solution to the Flexibility Problem

State Machine-based Controller
Can express arbitrarily complex, multiphase experimental protocols

States consist of clearly parameterized, reusable Protocol Modules

Protocol Modules are written in a fully general programming language
(National Instruments LabVIEW® or other supported language)

Powerful Operator’s Console
Panel is modularized with LabVIEW Tab Containers

Diagram (code) has a modular Producer-Consumer architecture

Well-supported, multi-platform hardware & software
Console runs on all computers supported by LabVIEW

High-performance Server-Controller hardware is industry standard PXI

Additional Server-Controller hardware is compatible with LabVIEW-RT

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

LabOS Supports Three Classes of User

Operator - runs experiments
Operations are expressed in clear, natural terms; only legal choices (in
pop-up lists) & operations (using control dimming) are available

Pre-configured experiments are loaded in a single operation

Data is presented in familiar, natural units

Data files & folders are automatically generated

Experimenter - designs & configures experiments
Configures system (channels, timings, etc)

Configures experiment by choosing Protocol Modules, setting
parameters and sequencing machine states

Programmer - creates new LabOS modules using LabVIEW
or another supported language

A Look at LabOS

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

LabOS Architecture – 3 Main Processes

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

LabOS Console

The Operator’s Console provides setup and run controls,
and a rich and timely view of the ongoing experiment.

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

Some Other Console Configuration Panels
Choose machines & file locations Setup Analog Inputs Configure attached equipment

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

System Monitor Console Panel

Console activities & performance
Monitors TCP connections

Logs Console Actions

Controls & monitors Console’s currency
with respect to data flow

Charts & indicators may fall behind, but data
is never lost

Controller performance
Stability of closed-loop CycleTime

Time actually used by Protocol & other
code in Protocol Loop (histogram +
statistics)

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

A Runtime Console Panel

A runtime panel can be built for each
experimental paradigm

Modular producer-consumer architecture
makes it easy for a programmer to
support new experiments

This panel contains
Reward controls and indicators that show
reward history & total fluid given

Controls to position an Xray system and
take pictures

Refixation specifications, with indications
as each is achieved

Near & far LED board controls &
indicators (immediate & batch modes)

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

LabOS Console Diagram (LabVIEW code)

Producer-Consumer
Architecture

Well-structured &
highly modular

Easy for Programmer to
add code for controls and
viewers to support new
experiments

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

Controller Protocol Control Loop

Executes all operations every Cycle (~1 ms)
Measures idle time for previous Cycle

Gets Operator Requests from Console

Read all “protocol sampling rate” analog channels

Read all digital inputs

Get a buffer of (~50) samples from each “fast
sampling rate” channel

Optionally filter PSR samples & apply calibrations
Protocol modules can accurately evaluate input

Run Machine States

Write all analog and digital outputs

Send a DataFrame with all Cycle data to Console

Respond to Operator Requests

1 m
s

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

States Consist of Protocol Modules (PMs)
Wait for S to push button

Are both eyes maintaining fixation?

Wait a while

Reward S for pushing button

Wait for other machines
to enter specified states

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

General Design Principles

Homogeneity
Use generalized design patterns whenever possible

Avoid special-case optimizations (or describe clearly & encapsulate)

Understandability
Functions must be completely described in terms meaningful to each
class of intended users

Operator – operates debugged protocols
Scientist – creates & parameterizes protocols from modules
Programmer – writes new modules

Data files must be completely self-describing

Modularity
Keep data formats simple & accessible to external applications

Buy, don’t build

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

LabOS Experimental Capabilities

Experiment control protocols
Support complex experiments that proceed in parallel threads through multiple
phases, contingent on incoming data
Manageable by Experimenters

Closed-loop control. On every protocol cycle (~ 1 ms):
1. Sample all analog & digital inputs channels
2. Check for Requests from Experimenter
3. Make sample-dependent protocol decisions
4. Update all output channels
5. Make all data available to the Experimenter (as a dataframe)

Designed for Biomedical & Psychophysical Experiments
Modest input channel counts (~32 analog & ~16 digital)
Modest output channel counts (~8 analog channels, ~100 digital)
Modest data rates

Protocol-controlled, closed-loop cycle time ~ 1 ms
Input streaming at ~ 50 KHz (for sampling brief signals like neural spikes)

Remote monitoring of experiments
Optimized command & data transmission over TCP

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

DAQ&C System Comparisons (1/2)

Few DAQ&C systems, provide well-developed software (as opposed to software development tools)
for biomedical and similar experimental applications.
The traditional DAQ&C platform consists of ADC, DAC, DIO & clock cards (“DAQ” cards) in a
multitasking PC. The most powerful and elegant of these is Rex, which runs under QNX, a Unix with
realtime enhancements. Rex appears capable of reliable, closed-loop control, but cannot be described
as deterministic, because there is a possibility of conflict between the high-priority Rex process and
high-priority system processes. Rex requires very specific hardware, cannot do fast sampling, and is
strongly programmer-oriented.
The Tucker-Davis (TDT) systems have a more powerful platform architecture, linking a DSP at the
experiment end, to a multitasking PC at the operator’s end. Experimental Protocols, unfortunately,
are limited to flowchart-like processing chains, without the control structures central to all modern
programming languages.
Only 2 DAQ&C system run on 2 general-purpose processors, under a time-sharing OS (TSOS) at the
operator’s end, and a true realtime OS (RTOS) at the experiment end. Tempo is a reasonably capable
system, but is specialized for electrophysiology, and yet cannot do fast sampling. It uses a proprietary
RTOS, rather than one that is widely supported, and has a restrictive menu-driven and line-oriented
user interface.
LabOS has a superior design and superior capabilities. It supports Protocols as general as those of
Rex, deterministic closed-loop control with unmatched 1 µs timing, and fast sampling. Both of its
processors support general-purpose programming languages, a level of generality that is reflected in
its capabilities. All hardware & software components are well-supported. The modern graphical
LabOS user interface is expressive and natural to use.

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

DAQ&C System Comparisons (2/2)

Platform
Architecture

Product

(& overall
rating)

Experimental
Protocols

Input-Output
Integration

RT
Performance

Fast
Sampl

-ing

Operator
Interface Generality

DAQ cards
controlled
by TSOS on
PC

AD Instr
PowerLab None Input only Input only Yes Simple graphs,

spreadsheets General

NIMH
Neuro-
Cortex

In “C” code,
mixed with
other
functions

?
Only
sampling is
deterministic

Yes Simple
Visual
neuro-
physiology

NEI LSR
Rex

Multithread
State
Machine;
textual lang

Closed-loop
control, modest
0.5 ms
resolution

Good, but not
deterministic No Menu driven

Visual
neuro-
physiology +
more

DSP
systems
linked to
TSOS on
host PC

TDT
PsychRP

Simple
templates Closed-loop

control, except
functions that
execute on PC

Fast &
deterministic,
except for
functions that
execute on
host PC

Yes Rich

Psycho-
acoustics

TDT
OpenEx &
PRvds

Unstructured
flowchart-like

Neuro-
physiology

RTOS &
TSOS on
general-
purpose
processors

Reflective
Computin
g Tempo

Multithread,
simple textual
lang

Closed-loop
control, 1 ms
mean response

Proprietary
RT kernel No Menu driven,

Specialized
Electro-
physiology

LabOS

Multithread
State
Machine;
states consist
of modules

Closed-loop
control on RTOS
processor, 1 µs
resolution

Fast &
deterministic,
widely-used
RTOS

Yes Rich &
Interactive

Potentially
very general

Experimental protocols should
be powerful, and easy to construct
and modify. The multi-threaded,
multi-phasic nature of complex
biological experiments is best
expressed as a multi-thread state
machine.

Input-output Integration can
be loose, as where a DAQ system
triggers a display system, or tight, as
in closed-loop control.

Realtime Performance: Speed
depends on many factors.
Determinism - whether realtime
scheduling can be reliably
maintained - depends on the
operating system.

Fast Sampling means ADC rates
greater than 20 KHz.

A good Operator Interface is
highly interactive, richly informative
about the ongoing experiment, and
allows access to arbitrary data
analysis, visualization and other
external applications.

Generality - is the system
targeted to specific paradigms?

Weak or very limited, good but with significant limitations, excellent or state of the art

The most capable systems, in each of 3 architectural categories,
according to 6 important criteria:

Joel M Miller, PhD • Eidactics • Suite 404 • 1450 Greenwich St • San Francisco CA 94109-1466 • jmm@eidactics.com • eidactics.com

Status as of July 2006

Eidactics has been awarded an NIH STTR Phase 1 Grant to
support the generalization and commercialization of LabOS

Beta testing will begin in 2007

LabOS will subsequently be sold and supported by Eidactics
(eidactics.com)

http://www.eidactics.com
http://www.eidactics.com

