LabOS

Closed-loop, Protocol-driven, Data Acquisition & Control for Biomedical Experiments

July 2006

Joel M Miller, PhD Martin Wiesmair, DI(FH)

Eidactics
San Francisco

Supported by NIH/NIBIB R41 EB006219 to JMM

Problems

Problems of Data Acquisition & Control (1/2)

- Input-Output Coupling Problem ("control" experimental devices)
 - Reliably sample multiple channels
 - Refresh displays & produce other outputs
 - Coordinate input & output
 - loose coordination "triggering", "synchronization"
 - □ closed-loop control input determines output, on a sample-by-sample basis
- Experimental Protocol Problem ("control" the course of the experiment)
 - A protocol is the plan for the course of an experiment
 - Complex experiments, particularly those with living subjects, may require multi-phased, data-contingent protocols
 - Simple processing pipelines cannot provide this flexibility
 - State machines provide natural descriptions of multi-phase experiments

Problems of Data Acquisition & Control (2/2)

Operator Interaction Problem

- Experimental data must be promptly displayed in useful forms
 - Operator must have adequate control of the experiment, and
 - See experimental data as it is collected
 - Requirements of a rich, interactive operator interface tend to be incompatible with deterministic data acquisition & control

Flexibility Problem

- Innovative experiments may require protocols unanticipated by vendor "solutions"
- Complex protocols must be easily developable by experimenters, without complex programming, in response to experience, and changing needs
- A wide range of standard hardware should work with the basic system

Input-Output Problem example: Oculomotor Physiology

- Realtime data acquisition
 - eye position ~ 6 channels, I 6 bits @ 500 Hz
 - muscle force ~ 4 channels, I 6 bits @ I KHz
 - motor neuron spike profiles ~ 4 channels, I2 bits @ 50 KHz
 - subject response switches ~ I digital input port (8 lines)
- Generation of stimuli & other control signals, contingent on incoming data
 - ◆ LED visual stimulus array ~ 4 digital output ports (32 lines)
 - Reward pump, tone generator, light intensities ~ 6 analog outputs
- A demanding set of tasks for a single lab computer!

"Loose-Coupling" Approach to the I-O Problem

- 1. Separate input & output computers
 - One computer for sampling
 - ◆ A second computer for stimulus generation & other outputs
 - Input & output computers are loosely coupled (eg: ethernet, GPIB)
- 2. A single computer with dedicated input & output devices streaming input data to, or output data from, memory or disk
 - Boards using buffered input and output
 - Stand-alone devices connected to computer ports
- These solutions are only suitable where simple interactions like "triggering" & "synchronization" provide sufficient coordination between inputs & outputs
 - Closed-loop control is impossible

Specialized Solutions to the I-O Coupling Problem

- Based on DSP (digital signal processor) chips, rather than general purpose processors
- High speed sampling and filtering
- Limited hardware choices
- Specialized software applications
- Targeted (limited) programability
- → Such specialized systems
 - May be the best solutions for some applications
 - But tend to restrict labs to experiments that they were designed to support

LabOS Solution

LabOS Solution to the I-O Coupling Problem

Two computers configured, not for input & output, respectively ...

LabOS Solution to the Input-Output Problem (1/2)

Two computers configured, not for input & output, respectively . . . but for the differing needs of a human operator & a realtime experiment

LabOS Solution to the Input-Output Problem (2/2)

- Operator's Console
 - Provides a rich, interactive interface to the ongoing experiment
 - Responds promptly, as perceived by a human operator
- Experiment Server-Controller
 - Provides deterministic protocolbased control of the experiment
 - Integrates input & output
 - Responds on experiment's time scale

LabOS Operator's Console

- General purpose, multitasking Macintosh, Windows or other computer
 - ◆ Responds on the Operator's time scale of ~100 ms to:
 - Implement Operator requests
 - Show experimental data & events
 - Provides multitasking access to 3rd party applications during experiment
- Multiple consoles can observe ongoing experiment

LabOS Experiment Server-Controller

- A general purpose processor running a realtime operating system (RTOS)
 - Ardence PharLap ETS (National Instruments LabVIEW RT module) on a Pentium 4
- Deterministic response on the experiment's time scale:
 - ♦ Closed-loop control at ~I KHz
 - All inputs are sampled and calibrated
 - Operator requests are read & responded
 - Protocol machine states are run
 - All outputs are produced
 - Buffered Analog data sampled at ~50 KHz
 - \diamond Timing resolution = I μ s

LabOS Solution to the Protocol Problem

- Complex experimental protocols are naturally expressed as a state machine, whose states correspond to meaningful phases of the experiment, eg:
 - "Present next target"
 - "Wait for eye to leave fixation window on a saccade"
- States consist of protocol modules, which
 - Perform small, meaningful operations
 - Are parameterized in calibrated, real-world units, eg:
 - Saccade detector specifies eye velocities in deg/s
 - Fluid rewards are specified in μl
 - Are programmed in a general-purpose language
 - Are refined and reused
 - Egs: "Detect beginning of saccade", "Is eye in window?"

LabOS Solution to the Operator Interaction Problem

- Information-rich, task-oriented, Experimenter's Console
 - Single control Console
 - Multiple viewing consoles connected to experiment by Internet
 - Modular control panels and viewers for new experiments
 - Current and saved data shown in same viewers
 - Use external applications for off-line data manipulation
- Experimenter-modifiable Protocols run in Experiment
 Controller
 - Parameterized, modular experimental protocols
 - Reusable modules, well-defined in experimenter's terms

LabOS Solution to the Flexibility Problem

- State Machine-based Controller
 - Can express arbitrarily complex, multiphase experimental protocols
 - States consist of clearly parameterized, reusable Protocol Modules
 - Protocol Modules are written in a fully general programming language (National Instruments LabVIEW® or other supported language)
- Powerful Operator's Console
 - Panel is modularized with LabVIEW Tab Containers
 - Diagram (code) has a modular Producer-Consumer architecture
- Well-supported, multi-platform hardware & software
 - Console runs on all computers supported by LabVIEW
 - High-performance Server-Controller hardware is industry standard PXI
 - Additional Server-Controller hardware is compatible with LabVIEW-RT

LabOS Supports Three Classes of User

- Operator runs experiments
 - Operations are expressed in clear, natural terms; only legal choices (in pop-up lists) & operations (using control dimming) are available
 - Pre-configured experiments are loaded in a single operation
 - Data is presented in familiar, natural units
 - Data files & folders are automatically generated
- Experimenter designs & configures experiments
 - Configures system (channels, timings, etc)
 - Configures experiment by choosing Protocol Modules, setting parameters and sequencing machine states
- Programmer creates new LabOS modules using LabVIEW or another supported language

A Look at LabOS

LabOS Architecture – 3 Main Processes

LabOS Console

The Operator's Console provides setup and run controls, and a rich and timely view of the ongoing experiment.

Some Other Console Configuration Panels

Clear Protocols

Default Protocols

Setup Analog Inputs

Configure attached equipment

Default Console

System Monitor Console Panel

- Console activities & performance
 - Monitors TCP connections
 - Logs Console Actions
 - Controls & monitors Console's currency with respect to data flow
 - Charts & indicators may fall behind, but data is never lost
- Controller performance
 - Stability of closed-loop CycleTime
 - Time actually used by Protocol & other code in Protocol Loop (histogram + statistics)

A Runtime Console Panel

- A runtime panel can be built for each experimental paradigm
 - Modular producer-consumer architecture makes it easy for a programmer to support new experiments
- This panel contains
 - Reward controls and indicators that show reward history & total fluid given
 - Controls to position an Xray system and take pictures
 - Refixation specifications, with indications as each is achieved
 - Near & far LED board controls & indicators (immediate & batch modes)

LabOS Console Diagram (LabVIEW code)

- Producer-ConsumerArchitecture
- Well-structured & highly modular
 - Easy for Programmer to add code for controls and viewers to support new experiments

Controller Protocol Control Loop

Executes all operations every Cycle (~I ms)

- Measures idle time for previous Cycle
- Gets Operator Requests from Console
- Read all "protocol sampling rate" analog channels
- Read all digital inputs
- Get a buffer of (~50) samples from each "fast sampling rate" channel
- Optionally filter PSR samples & apply calibrations
 - Protocol modules can accurately evaluate input
- Run Machine States
- Write all analog and digital outputs
- Send a DataFrame with all Cycle data to Console
- Respond to Operator Requests

States Consist of Protocol Modules (PMs)

General Design Principles

Homogeneity

- Use generalized design patterns whenever possible
- Avoid special-case optimizations (or describe clearly & encapsulate)

Understandability

- Functions must be completely described in terms meaningful to each class of intended users
 - Operator operates debugged protocols
 - Scientist creates & parameterizes protocols from modules
 - Programmer writes new modules
- Data files must be completely self-describing

Modularity

- Keep data formats simple & accessible to external applications
- Buy, don't build

LabOS Experimental Capabilities

- Experiment control protocols
 - Support complex experiments that proceed in parallel threads through multiple phases, contingent on incoming data
 - Manageable by Experimenters
- Closed-loop control. On every protocol cycle (~ I ms):
 - I. Sample all analog & digital inputs channels
 - 2. Check for Requests from Experimenter
 - 3. Make sample-dependent protocol decisions
 - 4. Update all output channels
 - 5. Make all data available to the Experimenter (as a dataframe)
- Designed for Biomedical & Psychophysical Experiments
 - ♦ Modest input channel counts (~32 analog & ~16 digital)
 - ♦ Modest output channel counts (~8 analog channels, ~100 digital)
 - Modest data rates
 - Protocol-controlled, closed-loop cycle time ~ I ms
 - □ Input streaming at ~ 50 KHz (for sampling brief signals like neural spikes)
- Remote monitoring of experiments
 - Optimized command & data transmission over TCP

DAQ&C System Comparisons (1/2)

- Few DAQ&C systems, provide well-developed software (as opposed to software development tools) for biomedical and similar experimental applications.
- The traditional DAQ&C platform consists of ADC, DAC, DIO & clock cards ("DAQ" cards) in a multitasking PC. The most powerful and elegant of these is Rex, which runs under QNX, a Unix with realtime enhancements. Rex appears capable of reliable, closed-loop control, but cannot be described as deterministic, because there is a possibility of conflict between the high-priority Rex process and high-priority system processes. Rex requires very specific hardware, cannot do fast sampling, and is strongly programmer-oriented.
- The Tucker-Davis (TDT) systems have a more powerful platform architecture, linking a DSP at the
 experiment end, to a multitasking PC at the operator's end. Experimental Protocols, unfortunately,
 are limited to flowchart-like processing chains, without the control structures central to all modern
 programming languages.
- Only 2 DAQ&C system run on 2 general-purpose processors, under a time-sharing OS (TSOS) at the operator's end, and a true realtime OS (RTOS) at the experiment end. *Tempo* is a reasonably capable system, but is specialized for electrophysiology, and yet cannot do fast sampling. It uses a proprietary RTOS, rather than one that is widely supported, and has a restrictive menu-driven and line-oriented user interface.
- LabOS has a superior design and superior capabilities. It supports Protocols as general as those of Rex, deterministic closed-loop control with unmatched I μs timing, and fast sampling. Both of its processors support general-purpose programming languages, a level of generality that is reflected in its capabilities. All hardware & software components are well-supported. The modern graphical LabOS user interface is expressive and natural to use.

DAQ&C System Comparisons (2/2)

Experimental protocols should be powerful, and easy to construct and modify. The multi-threaded, multi-phasic nature of complex biological experiments is best expressed as a multi-thread state machine.

Input-output Integration can be loose, as where a DAQ system triggers a display system, or tight, as in closed-loop control.

Realtime Performance: Speed depends on many factors.

Determinism - whether realtime scheduling can be reliably maintained - depends on the operating system.

Fast Sampling means ADC rates greater than 20 KHz.

A good **Operator Interface** is highly interactive, richly informative about the ongoing experiment, and allows access to arbitrary data analysis, visualization and other external applications.

Generality - is the system targeted to specific paradigms?

The most capable systems, in each of 3 architectural categories, according to 6 important criteria:

Platform Architecture	Product (& overall rating)	Experimental Protocols	Input-Output Integration	RT Performance	Fast Sampl -ing	Operator Interface	Generality
DAQ cards controlled by TSOS on PC	AD Instr PowerLab	None	Input only	Input only	Yes	Simple graphs, spreadsheets	General
	NIMH Neuro- Cortex	In "C" code, mixed with other functions	?	Only sampling is deterministic	Yes	Simple	Visual neuro- physiology
	NEI LSR Rex	Multithread State Machine; textual lang	Closed-loop control, modest 0.5 ms resolution	Good, but not deterministic	No	Menu driven	Visual neuro- physiology + more
DSP systems linked to TSOS on host PC	TDT PsychRP	Simple templates	Closed-loop control, except functions that execute on PC	Fast & deterministic, except for functions that execute on host PC	Yes	Rich	Psycho- acoustics
	TDT OpenEx & PRvds	Unstructured flowchart-like					Neuro- physiology
RTOS & TSOS on general- purpose processors	Reflective Computin g Tempo	Multithread, simple textual lang	Closed-loop control, 1 ms mean response	Proprietary RT kernel	No	Menu driven, Specialized	Electro- physiology
	LabOS	Multithread State Machine; states consist of modules	Closed-loop control on RTOS processor, 1 μ s resolution	Fast & deterministic, widely-used RTOS	Yes	Rich & Interactive	Potentially very general

Weak or very limited, good but with significant limitations, excellent or state of the art

Status as of July 2006

- Eidactics has been awarded an NIH STTR Phase I Grant to support the generalization and commercialization of LabOS
- Beta testing will begin in 2007
- LabOS will subsequently be sold and supported by Eidactics (eidactics.com)

