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Abstract---Several phenomenological models of the oculomotor 
mechanics that produce saccadic eye movements have been de- 
veloped. These models have been based on measurements of 
macroscopic muscle and orbital tissue properties and measure- 
ments of eye kinematics during saccades. We recorded the forces 
generated by the medial and lateral recti during saccades in an 
alert, behaving monkey using chronically implanted force trans- 
ducers. With this new data, we tested the ability of the classic 
saccade models to generate realistic muscle force profiles. Errors 
in the predictions of the classic saccade models led to a reexam- 
ination of the current models of extraocular muscle. Both a phe- 
nomenological, Hill-type muscle model and an approximation to 
Huxley's molecular level muscle model based on the cross- 
bridge mechanism of contraction (distribution moment model) 
were derived and studied for monkey extraocular muscle. Sim- 
ulations of the distribution moment model led to insights sug- 
gesting (i) specific modifications in the lumped force/velocity 
relationship in the Hill-type model that resulted in this type of 
phenomenological model being able to generate realistic dynam- 
ics in extraocular muscle during saccades; (ii) the distribution of 
activity in the different fiber types in extraocular muscle may be 
central to the characteristics exhibited by the muscle during sac- 
cades; (iii) the transient properties of lengthening muscle such as 
yielding are not significant during saccades; and (iv) the series 
elastic component in active muscle may be predominantly gen- 
erated by the elastic properties of the cross-bridges. 

KeywordsmSaccade, Extraocular muscles, Muscle cross- 
bridge models, Biomechanics. 

INTRODUCTION 

The orbit and extraocular musculature involved in hor- 
izontal eye movements have been modeled by several in- 
vestigators (for a review see Ref. 28). In general, most 
models have been phenomenological models with the 
same basic structure: two Hill-type muscle models at- 
tached to a second order linear model of  the orbit. 
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Throughout this paper a Hill-type muscle model refers to 
a lumped-parameter mechanical circuit model consisting 
of  a series elastic element cascaded with a parallel com- 
bination of  a force generator and a nonlinear viscous ele- 
ment (16). The research guiding the development of  these 
phenomenolog ica l  models  was the measurement  o f  
steady-state, macroscopic muscle properties primarily in 
human strabismus patients (6,29), cats (2,5,26), and mon- 
keys (12), and the measurements of  eye kinematics (1,9). 
In the biomechanical studies cited, the parameters of  the 
mechanical models were estimated from measurements 
that included the passive muscle length-tension relation, 
the active muscle length-tension relation, and the series 
elasticity relationship. In addition, the inertia of  the globe 
was estimated, and the elasticity and damping constants of  
the human orbit were estimated with the medial and lateral 
recti detached. 

The Hill-type model can generate realistic eye position, 
velocity, and acceleration trajectories for saccadic eye 
movements (20), which exhibit the most demanding ocu- 
lar dynamics to model due to their extremely high veloc- 
ities and accelerations. Even so, with the available mea- 
surements, models of  this class are still under-determined 
(28). With the advancement of  technology and the result- 
ing availability of  biocompatible materials, it is now pos- 
sible to implant chronically force transducers on each of  
the horizontal recti and subsequently measure the individ- 
ual muscle forces during normal saccadic eye movements 
in the alert, behaving monkey (22). In light of  the new 
data provided by these force transducers, we have reex- 
amined the existing models to see if they predict realistic 
muscle force records. 

In this paper, we begin by comparing simulation pro- 
files generated by a particular version of  phenomenolog- 
ical model for horizontal saccadic eye movements (20) 
with eye position, velocity, and muscle force profiles re- 
corded during horizontal saccades in the monkey. To this 
end, we (i) describe the methods used to record data from 
the monkey; (ii) describe the specific phenomenological 
model simulated (details given in Appendix A); and (iii) 
compare the simulated outputs to the data. Then we more 
closely examine the isolated muscle portion of  the Hill- 
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type model used in our initial simulations of the horizontal 
saccadic system. This leads us to (i) introduce a second 
muscle model, one based on the cross-bridge mechanism 
of contraction (34); (ii) describe this second model (details 
given in Appendix B); (iii) show results from simulations 
of the cross-bridge model that are then used to introduce 
appropriate changes in the phenomenological model to 
allow it to generate physiologically realistic behavior; and 
(iv) discuss insights about the properties of extraocular 
muscle derived from the models. We conclude with some 
final remarks. 

PHYSIOLOGICAL METHODS 

One adult male Macaca fascicularis was utilized to 
obtain the data on muscle forces reported in this study. All 
experimental protocols were approved by the Institutional 
Animal Care and Use Committee at the California Pacific 
Medical Center and complied with the guidelines of the 
Public Health Service policy on Humane Care and Use of 
Laboratory Animals. The animal was prepared for eye 
movement recordings by implanting a scleral eye coil and 
head restraint system under sodium pentobarbital anesthe- 
sia and aseptic surgical conditions. Heart rate, respiratory 
rate, and body temperature were monitored for the dura- 
tion of the surgery. Analgesics and antibiotics were given 
during the postsurgical recovery period. A coil of Teflon- 
coated stainless steel wire was implanted under the con- 
junctiva of the left eye using the procedure of Fuchs and 
Robinson (13), as modified by Judge et al. (19). A stain- 
less steel tube was embedded in dental acrylic attached 
securely to the animal's skull with bone screws, permit- 
ting painless restraint of the animal's head during the ex- 
perimental sessions. The scleral eye coil, when used in 
conjunction with a pair of orthogonally aligned magnetic 
fields maintained electronically in temporal quadrature, 
produced an eye position measurement system with a sen- 
sitivity of 0.25 ~ zero drift, and a bandwidth of 1 kHz 
(25). The monkey was returned to its home cage to re- 
cover from these surgical procedures and, following com- 
plete recovery, was trained to climb voluntarily from its 
cage into a primate chair for daily experimental sessions. 

Prior to implantation of the force transducers, the mon- 
key was trained to make saccades to lighted LEDs selected 
randomly from a grid array. An array of 25 LEDs was 
used consisting of five rows with LEDs spaced at 10 ~ 
intervals ranging from ---20 ~ from primary position along 
both the vertical and horizontal meridians. 

When the animal had learned to make accurate sac- 
cades to the location of the lit LED, a buckle force trans- 
ducer was implanted on the left lateral rectus (LR), and 
about 4 months later one was implanted on the left medial 
rectus (MR). To implant the transducer, the muscle was 
exposed but not detached (22). The transducer was sutured 

to the muscle to prevent rotation. The signal leads led out 
of the orbit under the skin and exited through a connector 
attached to the acrylic cap. The globe was rotated to en- 
sure the leads were not limiting motion. 

After the monkey recovered, muscle forces and eye 
position were measured during saccades and were sampled 
at 1000 Hz and stored on computer disk. The trials were 
sorted, and successful trials of horizontal saccades were 
examined. Eye position records were smoothed and digi- 
tally differentiated. Force records were scaled as a per- 
centage of the total range observed in each muscle during 
the session; the range and distribution of movements were 
similar across sessions. Complete details on the physio- 
logical database, which includes hundreds of saccades 
made to all positions in the LED array including many 
examples of individual eye movements and simultaneous 
muscle force measurements, have been published already 
(22,23). For the purpose of this modeling paper, we con- 
centrate on the data from four consecutive sessions in 
order to minimize the effects of possible slow changes in 
force transducer sensitivity. This data included 60 hori- 
zontal saccades of amplitudes - 10 ~ and 20 ~ in both direc- 
tions. 

When one of the transducers failed, the monkey was 
euthanized with an overdose of pentobarbital. 

DESCRIPTION OF THE 
PHENOMENOLOGICAL MODEL 

The phenomenological model of the monkey horizontal 
saccadic mechanics used in this study was derived from 
the human model developed by Lehman and Stark (20), 
which has been shown to produce realistic eye position, 
velocity, and acceleration trajectories of human saccades 
initiated from primary position over a range of saccade 
sizes. Moreover, the Lehman and Stark model incorpo- 
rates the results of several generations of model develop- 
ment and has been extensively analyzed and subjected to 
rigorous sensitivity analyses (3,9,17). To directly com- 
pare the force profiles predicted by this model to those 
recorded in the monkey, it was necessary to first convert 
the model based on human data to reflect the mechanics of 
the monkey musculature and orbit. In addition, to com- 
pare the forces recorded with those predicted by the 
model, it was essential to first divide the total passive 
elasticity into its components, which consist of the passive 
muscle elasticities and the orbital elasticity in parallel. A 
mechanical circuit of the modified model used in this 
study is shown in Fig. 1. The muscles are modeled with a 
variation of the Hill muscle model, the parameters for 
which are derived mostly from steady-state measurements 
of macroscopic muscle properties. Briefly, the recipro- 
cally organized neural inputs (I1 and 12) are filtered to 
generate the "active state" internal muscle forces, Fal and 
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FIGURE 1. Mechanical circuit model ofthe horizontal saccadic 
eye movement system. The phenomenological model simu- 
leted in this study is shown. The orbital mechanics are rood- 
eled by a linear mass-spring-dashpot system (K o, B o, ,!o). The 
muscles are modelled as follows: The inputs (/1, 12) are the 
neural inputs converted to their force equivalents. The "active 
state force" of each muscle (Fsl, Fa2) is a filtered version of its 
input and is represented by a force generator. Each force gen- 
erator is in parallel with an non-linear viscous element (B1, B 2) 
representing the force-velocity relationship of the muscle. 
This combination is in parallel with a series elastic element 
{K,,). The whole combination is in parallel with another spring 
representing the passive muscle elasticity (Kp). The insets at 
the top show the temporal waveforms for the inputs: PD in- 
dicates pulse or pause duration, PH indicates pulse or pause 
height and S indicates the level of the final steady-state step. 

F,2. In each muscle, the force generator is in parallel with 
a nonlinear dashpot, B, which represents the force- 
velocity relation of active muscle. This unit is in series 
with an elastic element, Kse, which represents the exper- 
imentally measured property that an instantaneous reduc- 
tion in load results in an instantaneous change in muscle 
length (i.e., the characteristic of a spring). This group of 
mechanical elements is in parallel with an elastic element, 
Kp, which represents the passive elastic properties of the 
muscle. Two of these muscle models are combined with a 
mass-spring-dashpot representation of the orbit to model 
the horizontal saccadic system. 

This type of lumped parameter model of the macro- 
scopic properties of muscle is appealing because the pa- 
rameters can be measured relatively easily and because the 
structure gives insight into the behavior of the muscle 
during movement. On the other hand, the model allows no 
comparisons to be made with the underlying mechanism 
of contraction. Moreover, it does not represent all the 

known transient properties of lengthening muscle, which 
may be important especially in high-velocity movements 
like saccades. (The force-velocity relationship used in the 
model is a function of velocity for a given level of inner- 
vation, whereas lengthening muscle has been shown to 
exhibit yielding (34), which implies that force in the re- 
lationship cannot be uniquely described by velocity and 
innervation.) 

The model was simulated with Simnon, a nonlinear 
dynamic systems simulation package. The parameters and 
the equations of motion for this model of the monkey 
horizontal saccadic system are derived in Appendix A. 

RESULTS 

Figure 2 shows experimentally measured eye position 
and velocity profiles (upper two sections), agonist force 
and force rate profiles (middle two sections), and antag- 
onist force and force rate profiles (lower two sections) 
recorded during a 10 ~ (dashed) and a 20 ~ (solid) tempo- 
rally directed saccade. Each trace shown in this figure is 
obtained from one representative saccade of each size se- 
lected from the sample of 60 similar movements. We be- 
lieved that it was more realistic to optimize the model 
parameters to attempt to create actual individual move- 
ments rather than averaged results. However, having op- 
timized the model for the particular movements shown in 
Fig. 2, we then checked to see if the model could also 
produce each of the 60 movements included in the data- 
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FIGURE 2. Trajectories recorded from a monkey during hori- 
zontal saccadic eye movements. Eye position (a) and velocity 
(b), agonist force (c) and force rate (d), and antagonist force (e) 
and force rate (f) recorded during a 10 ~ (dash) and 20 ~ (solid) 
temporally directed saccade initiated from primary position. 
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base. In order to provide assurance that the selected move- 
ments are indeed representative of the data we measured 
the standard errors of the mean position reached at the end 
of the 10 ~ and 20 ~ saccades and the standard errors for the 
muscle force measurements at the points of maximum rate 
of force change during 10 ~ and 20 ~ saccades. The standard 
error values obtained from the calculations were ---0.71 ~ 
and 0.88 ~ for position and ---0.94 and 3.75% for force for 
10 ~ and 20 ~ movements, respectively. 

The normalized magnitudes of the forces exerted by the 
muscles are shown on this figure because they are ade- 
quate for the comparisons being made here. The estima- 
tion of the absolute values of muscle forces is discussed in 
Appendix C. Figure 3 shows analogous waveforms but 
now generated by simulations of the model for monkey 
saccadic eye movements, and Fig. 4 shows a direct com- 
parison of the overlaid normalized experimental data and 
normalized model force profiles. The eye kinematic traces 
show that, as was the case for the human (20), the model 
for the monkey can be optimized to produce very realistic 
eye position and velocity profiles. The most obvious fea- 
ture found in the experimental muscle force records is the 
qualitative symmetry in the shape of the agonist and an- 
tagonist force trajectories. In contrast, the simulated force 
profiles from the model show a definite asymmetry be- 
tween agonist and antagonist muscle trajectories. By vary- 
ing the parameters of the inputs (11, 12) to the model the 
shape of the agonist profile, for example, can be made to 
look more like that recorded from the monkey; however, 
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FIGURE 4. Comparison of normalized force profiles from data 
and model. Normalized agonist (a) and antagonist (b) force 
profiles from data (solid) and model simulations (dash) for a 
20* temporal saccade initiated from primary position. 

the resulting antagonist profile looks even more unrepre- 
sentative of the monkey data. No simple parameter mod- 
ifications change this result. In spite of  generating reason- 
able position and velocity profiles, in its present form the 
model does not accurately reflect the force dynamics of 
the extraocular muscles during horizontal saccadic eye 
movements. This could be due to errors in the model of  
the muscles, of the orbit, and/or of innervation. The mus- 
cle model is a good choice to study more closely with an 
eye for possible changes because (i) the force-velocity 
relation is poorly characterized, at least for lengthening 
muscle, (ii) the series elasticity is assumed to be constant 
in spite of evidence suggesting otherwise (28), (iii) the 
required input forces (F,) are higher than physiologically 
measured forces (12), and (iv) the orbital model is thought 
to be accurate in the range of movements being studied 
here (28). 
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FIGURE 3. Trajectories generated by the model of monkey 
saccadic eye movements. Eye position (a) and velocity (b), 
agonist force (c) and force rate (d), and antagonist force (e) 
and force rate (f) recorded during a 10 ~ (dash) and 20 ~ (solid) 
saccade initiated from primary position. 

DESCRIPTION OF A MECHANISTIC MODEL OF 
EXTRAOCULAR MUSCLE 

For a muscle model to be useful in studies of movement 
on a macroscopic scale, the model (i) should not require 
too much computation time and (ii) must accurately rep- 
resent the characteristics of whole muscle during move- 
ments that include both lengthening and shortening under 
variable levels of innervation. Hill-type models are com- 
monly used because they easily satisfy the first require- 
ment and, to some extent, satisfy the second. However, 
the model does not exhibit known transient properties of 
lengthening muscle such as yielding. For this reason, it 
may not be a useful representation for high-velocity move- 
ments like saccades, which presumably, produce transient 
behavior to the greatest extent. This provides the clearest 
motivation for more closely examining the ability of the 
muscle model to exhibit the dynamics of extraocular mus- 
cle during saccadic eye movements. 

Another muscle model, the distribution moment (DM) 
model (34), was studied along with the Hill-type model 
for comparison purposes because it does exhibit some of 
the transient properties of lengthening muscle, while re- 
maining computationally feasible. The DM model is based 
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on the molecular mechanism of contraction rather than a 
lumped functional representation of macroscopic muscle 
properties. The macroscopic muscle characteristics for 
this type of model are an emergent property. 

A. F. Huxley proposed a muscle model based on the 
mechanism of contraction, or cross-bridge formation and 
detachment (18). In this case, the muscle is assumed to 
consist of a large number of identical sarcomeres, so the 
macroscopic muscle characteristics can be directly deter- 
mined from the model of a single sarcomere. 

Figure 5 shows a schematic of the two-state Huxley 
model for one sarcomere. Each of the large number of 
cross-bridges in a muscle is represented by a spring, and 
the force generated by each cross-bridge is proportional to 
the length of its spring (x). A change in muscle length is 
generated by the movement of the myosin heads in a 
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FIGURE 5. Schematic of the cross-bridge model of muscle 
contraction. (a) shows a schematic of cross-bridges in a sar- 
comere. A myosin filament is represented by the thick bar and 
actin filaments are represented by the thin bars. The vertical 
bars represent Z lines. Cross-bridge sites are represented by 
balls attached to the myosin filament by springs. Actin sites 
are represented by the matching sockets. The figure shows 
both attached and unattached cross-bridges, x reflects the 
length of an attached spring; v is the velocity; / is the distance 
between actin sites; and s is the sarcomere length. (b) shows 
the two-state model of cross-bridge formation in which State 
0 is the unattached and State I the attached condition, f is the 
attachment rate constant and g is the detachment rate con- 
stant. (c) shows the rates of attachment and detachment as a 
function of x, See text for the definition of symbols in (c). 

cross-bridge (bond), which forces the myosin and actin 
fibers to slide past each other in opposite directions. If, at 
a given moment, the distribution of bond lengths, or 
spring lengths--n(x, t )-- is  known, then the total force 
generated by the muscle can be calculated. In a simple 
two-state kinetic model with a constant level of innerva- 
tion, we only need to know the rates of bond attachment 
(f) and detachment (g) to write a partial differential equa- 
tion describing the rate of change of the bond distribution 
in one-half sarcomere: 

On(x, t) On(x, t) 
Ot v(t) dx - f ( x )  [1 - n(x, t)] - g(x)n(x, t) 

where n(x, t) is the bond distribution, 0 < n < 1; v(t) is 
the velocity of shortening; f(x) is the rate of bond attach- 
ment; and g(x) is the rate of bond detachment. 

Zahalak suggested an approximation that makes the 
simulation of this equation computationally tractable (34). 
First, he noted that the partial differential equation can be 
rewritten as an infinite series of ordinary differential equa- 
tions of the moments of the distribution. Further, he 
showed that if the shape of the function describing the 
bond distribution is known a priori and if the function is 
completely described by a finite number of its moments, 
the system can be expressed as a finite series of coupled, 
first order differential equations. He assumed the bond 
distribution was Gaussian, in which case the dynamics can 
be expressed with three differential equations (because the 
first three moments completely define a Gaussian distri- 
bution). Conveniently, the macroscopic muscle properties 
of interest are functions of these low order moments. The 
parameter values and defining equations for the DM 
model of a monkey extraocular muscle are given in Ap- 
pendix B. 

Methods for Comparing the Muscle Models 

The approach taken to compare the two classes of mod- 
els was to calculate the input necessary to generate the 
recorded force trajectories, given the muscle length and 
velocity derived from the simultaneously recorded eye po- 
sition data. It is important to recognize that the inputs to 
the two muscle models cannot be directly compared be- 
cause the input to the Hill model is active state and the 
input to the DM model is activation of cross-bridge sites. 
However, their temporal shapes and the similarity of these 
shapes can be compared with those reported for motoneu- 
ronal firing patterns in monkey (11,14,27,30) that ulti- 
mately generate both model inputs. 

Before the data could be used with the simulations, 
absolute magnitudes of force had to be estimated from the 
recorded data. Because the muscle force amplifiers were 
modified early in the course of the experiments (but well 
before any of the data used in the present report were 
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obtained), we could not directly compare the original cal- 
ibrations to the recorded data to determine absolute forces. 
Instead, we estimated forces as described in Appendix C. 

Both the Hill-type and DM muscle models were simu- 
lated. For simplicity, the passive elasticity was assumed to 
be zero in both models even though it makes a small 
contribution at the extremes of the range of eye move- 
ments explored (---20 ~ ) (6). The inverse models were sim- 
ulated using Borland C/C + + .  Recorded force and posi- 
tion records were used as input and the optimal muscle 
activation profiles were calculated using a modified ver- 
sion of "brent .c"  optimization algorithm (24). The opti- 
mization was checked by running forward simulations 
with the calculated activation and the recorded position as 
input and verifying that the model forces matched the 
recorded forces. Note that any parameters derived with the 
direct aid of simulation were derived for one particular 
saccade trial (e.g., those shown on Fig. 3) and then were 
used in simulations with data from other 60 saccade trials. 
Also, the optimal active state in the Hill model (i.e., Fal 
and Fa2 in Fig. 1) was calculated instead of the unfiltered 
inputs (I 1 and 12 in Fig. 1). 

As described in Appendix B, gl, which partially de- 
fines the rate of cross-bridge detachment, was first calcu- 
lated to satisfy the relationship Hill found between main- 
tenance heat, maximum isometric force, and maximum 
velocity of shortening. Simulations suggested this was an 
appropriate gl for the agonist muscle. However, the sim- 
ulations also suggested that different values of this param- 
eter were needed for agonist and antagonist muscle. A 
relatively large g~ is needed to allow the agonist force rate 
to decrease rapidly after peak force is reached early in the 
saccade. If gl is too low, muscle activation has to decrease 
more rapidly and to a larger extent to compensate for the 
slow rate of detachment; as a result, agonist muscle acti- 
vation dips well below the final steady-state activation 
level (pulse-negative pulse-step), which contradicts the 
known pulse-slide-step firing pattems of ocular motoneu- 
rons (11,14,27,30). In contrast, in the antagonist muscle, 
if gl is too high, then muscle activation must decrease 
slowly throughout most of the saccade instead of "turning 
off"  in the pause-slide-step pattern of ocular motoneu- 
rons. The use of different detachment rates for agonist and 
antagonist muscles is consistent with our basic under- 
standing of extraocular muscle. The large fast fibers are 
thought to dominate force generation in the agonist muscle 
(even though all fibers contribute). In contrast, at the 
lower levels of innervation in the antagonist muscle, the 
slow fibers are believed to contribute a much larger pro- 
portion of the force (31); moreover, slow fibers have a 
slower rate of decay in force, which, presumably, corre- 
sponds to a lower rate of cross-bridge detachment and 
would, therefore, be the limiting factor in the rate at which 
the antagonist muscle force decreases during a saccade. 

The detachment rate factor gl has an effect on the 
force-lengthening velocity that can also be represented in 
the Hill muscle model by scaling the lengthening force- 
velocity relationship differently for the agonist and antag- 
onist muscle (i.e., different dle n, which is defined in Ap- 
pendix A). Simulations showed that analogous modifica- 
tions of dlen had the same effect on the calculations of 
agonist and antagonist activations in the Hill model as 
does varying gl in the DM model. Because the larger 
saccades of the monkey used in the present study tended to 
overshoot the target and then return with a small dynamic 
movement, the agonist muscle has a brief period of length- 
ening at the end of the saccade. As a result, the length- 
ening force-velocity relationship clearly affects the agonist 
muscle characteristics as well as the antagonist. However, 
the results also applied to smaller saccades with little over- 
shoot. In the agonist muscle, die n must be large or else a 
pulse-negative pulse-step activation pattern is required; a 
large "braking pulse" in agonist activation at the end of a 
saccade is not consistent with the observed pulse-slide- 
step pattern of single motoneurons (14). In contrast, in the 
antagonist muscle, die n must be small or else a slowly 
decreasing activation is predicted, which is inconsistent 
with the pause-slide-step pattern of motoneurons. The 
larger die n, the smaller the force at a given lengthening 
velocity and level of innervation. Decreasing ale n has a 
similar affect on the lengthening force-velocity relation- 
ship as increasing gl in the DM model. 

RESULTS FROM MUSCLE MODEL SIMULATIONS 

Figures 6 and 7 show the DM and modified Hill model 
predictions of agonist and antagonist muscle activation for 
10 ~ and 20 ~ saccades from primary position (d,f) as well as 
the forces (c,e) and eye kinematics (a,b) produced during 
those saccades. Recall that the force and kinematic trajec- 
tories were the inputs used to calculate the appropriate 
muscle activations.) The modified Hill model utilized dif- 
ferent values of the parameter die n as described above and 
in Appendix A for the agonist and antagonist muscles. 
With this modification in place the predicted muscle acti- 
vations are similar for the two models and both are con- 
sistent with known motoneuronal activations during sac- 
cades; their durations are nearly the same as saccade du- 
ration (11,14,27,30). Agonist activation is much greater 
for 20 ~ saccades than 10 ~ saccades. At the same time, 
motoneuron burst frequency is higher and longer in dura- 
tion during 20 ~ saccades than during 10 ~ saccades. As a 
result, one would expect muscle activation to increase for 
a longer time and to a greater extent during the larger 
saccades. Antagonist activation is consistent with mo- 
toneurons being "turned of f"  (pause) or reduced to a very 
low firing rate. Antagonist activation decreases at about 
the same rate; activation for 10 ~ saccades appears to begin 
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FIGURE 6. Computed activations of DM model for 10" and 20* 
saccades initiated from primary position. Eye position (a) and 
velocity (b), agonist and antagonist forces (c,e) and agonist 
and antagonist activations (d,f) during 10" (dash) and 20 ~ 
(solid) seccedes initiated from primary position are shown. 
The activations were calculated so the DM model generated 
the measured force profiles given the measured kinematics. 

to return to its tonic level just before the minimum acti- 
vation is reached, whereas activation for 20 ~ saccades pla- 
teaus at the minimum. 

DISCUSSION 

Force-Velocity Relationship 

It was somewhat surprising that the modified Hill-type 
model produced activation patterns so similar to the DM 
model. The modification in the Hill model that produced 
this result (i.e., requiring d i e  n t O  have different values for 
the agonist and the antagonist) appeared at first to be 
merely a mathematical manipulation without any connec- 
tion to actual properties of the muscle. However, simula- 
tions of the DM model suggested a connection between 
the manipulation and the fact that agonist and antagonist 
eye muscles are likely to be dominated by physiologically 
different muscle fiber types, the fast and slow types, re- 
spectively. Since no details about the contractile proper- 
ties of these two types eye muscle fibers exist, our simu- 
lation results suggest the need for explorations of the 
force-velocity properties of different fiber types within 
extraocular muscle as well as the force-velocity relation- 
ship of extraocular muscle for varying degrees of inner- 
vation. The results presented here suggest, at the very 

least, that the force-lengthening velocity relationship is 
important in the simulation results. 

The DM and Hill models that we have developed have 
similar force-velocity relationships for shortening muscle 
but not for lengthening muscle. Even the steady-state 
force-lengthening velocity relationships are not the same 
for these two models. However, the exact shape of the 
assumed force-lengthening velocity relationship did not 
appear to significantly affect the simulations in the Hill 
model (several hyperbolas and straight lines with various 
slopes were used but produced little change in the simu- 
lated results). 

We used simulations of the DM model to investigate 
the transient properties of rapidly lengthening extraocular 
muscle. The simulations showed that the yielding that re- 
sulted from sudden changes in lengthening velocity lasts 
only about 5-7 msec and is small in magnitude. The high 
rate of attachment accounts for the rapid recovery. The 
importance of transient properties does not appear to be as 
great as anticipated, at least with the rate parameters as- 
sumed (/'Ix] and g[x]). The simulations agree with the 
experimental results: the muscle forces do not show un- 
usual transient properties; instead the antagonist muscle 
always shows a smooth change, qualitatively symmetrical 
to the agonist force trajectory. It appears that the transition 

1: I 
t -,o I . . . . . . . . . . . .  

-20 

o 1~o 2~o 
Ca) 

6O 

0 ~ ~ 

0 100 200 
Co) 

0 100 200 
(c) 

15 

10 

5 "" . . . . . . . . . . . . . . . .  - 

0 

< 
.~ 20 

0 

(d) 
0 I00 200 

20 , , 

10 
,--.,.,,.- . . . . . . . . . .  , 

5 : . . . .  

0 
0 100 200 0 100 200 

(e) Time (msec) (f) Time (msec) 

FIGURE 7. Computed activations of modified Hill model for 
10 ~ and 20 ~ saccades initiated from primary position. Eye po- 
sition (a) and velocity (b), agonist and antagonist forces (c,e) 
and agonist and antagonist activations (d,f) during 10 ~ (dash) 
and 20 ~ (solid) saccades initiated from primary position are 
shown. The activations were calculated so the modified Hill 
model generated the measured force profiles given the mea- 
sured kinematics. 
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to high speeds during saccades is smooth enough that 
yielding does not occur. The DM model exhibits yielding 
when the steady-state velocity is suddenly changed but not 
when saccadic velocity profiles are assumed. 

Series Elasticity 

The series elastic element is included in the Hill model 
to represent the result of quick release experiments. When 
the force applied to an activated, isometric muscle is sud- 
denly reduced, the muscle length exhibits an abrupt re- 
duction in length followed by a more gradual reduction 
until a new steady-state length is reached. The series elas- 
ticity is often attributed to the tendon, which is made of 
elastic, collagenous tissue. However, a quick estimate of 
the stiffness of tendon suggests that this is an unlikely 
explanation: Young's Modulus for collagen (32), 

Ere n = 10 lo dyne/cm 2 = 107 gf/cm 2 

tendon stiffness, 

K,~,, = EtenAten/tte n 

where Ate n is the cross-sectional area of tendon; Lten is the 
length of tendon. (We assumed Lte ~ = 0.6 cm (19) and 
Ate n = Ainu J 4  = 0.024 cm z, we assumed the tendon has 
a relatively large cross-sectional area since it has a wide 
insertion.) 

Kte ~ = 3.92e8 dyne/cm = 6,480 gf/deg 

In contrast, series elasticity, K~ = 2.3 gf/deg (see Ap- 
pendix A) = 1.4e5 dyne/cm,  which implies  that 
Kte ~ >> K~e. Since tendon stiffness is three orders of mag- 
nitude greater than the series spring stiffness for these 
muscles, the elasticity must be in the muscle itself. 

The most likely location for the series elasticity is in the 
cross-bridges, although elastic, connective tissue through- 
out the muscle may also contribute. Cross-bridge sites are 
the only mechanical elements in muscle that can directly 
account for experimental results that show the magnitude 
of the series elasticity varies with innervation (5). Fortu- 
nately, the DM model can be used to explore this possi- 
bility since muscle stiffness is proportional to the zeroth 
moment of the bond distribution and is derived as follows: 

msk  r~ ~ mskh 
gl/2"sarc(t) = ~ JS~  n(x, t)dx = ~ Qo(t) 

where K1/2-s~ is the half-sarcomere time varying stiffness 
and the parameters are defined in Appendix B. The total 
muscle stiffness is the half-sarcomere stiffness times the 
number of half-sarcomeres in parallel divided by the num- 
ber of  half-sarcomeres in series, or: 

Appmsppkh Ao 
Kmu~(t) - 41n~ Qo(t) = -~n K1/2-~ar~ 

where Km~(t)  is the instantaneous muscle stiffness. 
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FIGURE 8. DM model simulation of muscle series elasticity 
during a 20* saccade from primary position. 

Figure 8 shows the instantaneous muscle stiffness dur- 
ing a 20 ~ saccade from primary position. Note that the 
stiffness is the same order of magnitude as that expected 
from experimental measurements. Therefore, the DM 
simulations support the idea that the series elasticity of 
extraocular muscle is primarily in the cross-bridges. 

Final Conclusions and Remarks 

One can generate many different models with the same 
input/output characteristics. Therefore, the purpose of the 
model must be considered. For example, in this study 
extraocular muscle is modeled to further our understand- 
ing of the oculomotor system. Therefore, the structure of 
the system is important. Another model with the same 
input/output characteristics would not be useful. The DM 
model is directly based on the mechanism of contraction 
and is, therefore, useful for making new associations be- 
tween the data and the physiology. For example, it is 
certainly a more useful model if one is studying how a 
disease affects the system. However, the DM model is 
more complicated and computationally slower than the 
Hill model. The Hill model represents the macroscopic 
manifestations of the molecular interactions. With appro- 
priate modifications in the Hill model, it also appears to 
reflect adequately the functional macroscopic components 
of extraocular muscle. As a result, our modified Hill 
model may be useful for additional simulation studies on 
a gross scale. For example, it could be used to explore the 
interactions of the six extraocular muscles and also non- 
linear, initial position effects when eye movements are 
made from eccentric starting points. 

R E F E R E N C E S  

1. Bahill, A. T., M. R. Clark, and L. Stark. The main se- 
quence, a tool for studying human eye movements. Math. 
Biosc. 24:191-204, 1975. 

2. Barmack, N. H., C. C. Bell, and B. G. Rence. Tension and 
rate of tension development during isometric responses of 
extraocular muscles. J. Neurophysiol. 34:1072-1079, 1971. 

3. Clark, M. E., and L. Stark. Control of human eye move- 



354 K .D .  PFANN, E. L. KELLER, and J. M. MILLER 

ments: I. modelling of extraocular muscle. Math. Biosc. 
20:191-211, 1974. 

4. Close, R. I., and A. R. Luff. Dynamic properties of inferior 
rectus muscle of the rat. J. Physiol. Lond. 236:259-270, 
1974. 

5. Collins, C. C. Orbital mechanics. In: The Control of Eye 
Movements, edited by P. Bach-y-Rita, C. C. Collins, and 
J. E. Hyde. New York: Academic Press, 1971, pp. 283- 
325. 

6. Collins, C. C. The human oculomotor control system. In: 
Basic Mechanisms of Ocular Motility and Their Clinical 
Implication, edited by E. Lennerstrand and P. Bach-y-Rita, 
Oxford: Pergammon, 1975, pp. 145-180. 

7. Collins, C. C., M. R. Carlson, A. B. Scott, and A. Jam- 
polsky. Extraocular muscle forces in normal human sub- 
jects. Invest. Ophthalmol. Vis. Sci. 20:652-664, 1981. 

8. Collins, C. C., D. O'Meara, and A. B. Scott. Muscle ten- 
sion during unrestrained human eye movements. J. Physiol. 
Lond. 245:351-369, 1975. 

9. Cook, G., and L. Stark. Dynamics of the saccadic eye- 
movement system. Commun. Behav. Biol. 1:197-204, 
1968. 

10. Fuchs, A. F. Saccadic and smooth pursuit eye movements 
in the monkey. J. Physiol. Lond. 191;609-631, 1967. 

11. Fuchs, A. F., and E. S. Luschei. Firing patterns of ab- 
ducens neurons of alert monkeys in relationship to horizon- 
tal eye movement. J. Neurophysiol. 33:382-392, 1970. 

12. Fuchs, A. F., and E. S. Luschei. Development of isometric 
tension in simian extraocular muscle. J. Physiol. 219:155- 
166, 1971. 

13. Fuchs, A. F., and D. A. Robinson. A method for measur- 
ing horizontal and vertical eye movement chronically in the 
monkey. J. Appl. Physiol. 21:1068-1070, 1966. 

14. Goldstein, H. P. The Neural Encoding of Saccades of 
Rhesus Monkey. Baltimore: Johns Hopkins University, 
Ph.D. Thesis, 1983. 

15. Goldstein, H. P., A. B. Scott, and L. B. Nelson. Ocular 
motility. In: Biomedical Foundations of Ophthalmology, 
vol. 2, edited by E. Tasman and U. Jaeger. New York: J. 
Lippincott, 1989, pp. 1-65. 

16. Hill, A. V. The heat of shortening and the dynamic con- 
stants of muscle. Proc. Roy. Soc. 126B:136--195, 1938. 

17. Hsu, F. K., A. T. Bahill, and L. Stark. Parametric sensi- 
tivity analysis of a homeomorphic model for saccadic and 
vergence eye movements. Computer Prog. Biomed. 6:108- 
116, 1976. 

18. Huxley, A. F. Muscle structure and theories of contraction. 
Prog. Biophys. Biophys. Chem. 7:257-318, 1957. 

19. Judge, S. J., B. J. Richmond, and F. C. Chu. Implantation 
of magnetic search coils for measurement of eye position: an 
improved method. Vision Res. 20:535-538, 1980. 

20. Lehman, S., and L. Stark. Simulation of linear and nonlin- 
ear eye movement models: sensitivity analyses and enumer- 
ation studies of time optimal control. J. Cybern. lnfo. Sci. 
4:21-43, 1979. 

21. Miller, J. M., and D. Robins. Extraocular muscle sideslip 
and orbital geometry in monkeys. Vision Res. 27:381-392, 
1987. 

22. Miller, J. M., and D. Robins. Extraocular muscle forces in 
alert monkey. Vision Res. 32:1099-1113, 1992. 

23. Pfann, K. D. Quantitative Studies of Eye Movement Gen- 
eration: Biomechanics and Neural Control. San Francisco/ 
Berkeley: University of California, Ph.D. Thesis, 1993. 

24. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and 

B. P. Flannery. Numerical Recipes in C. New York: Cam- 
bridge University Press, 1988, pp. 402-405. 

25. Robinson, D. A. A method of measuring eye movement 
using a scleral search coil in a magnetic field. IEEE Trans. 
Bio-Med. Eng. BME-10:137-145, 1963. 

26. Robinson, D. A. The mechanisms of human saccadic eye 
movement. J. Physiol. Lond. 174:245-264, 1964. 

27. Robinson, D. A. Oculomotor unit behavior in the monkey. 
J. Neurophysiol. 33:393-404, 1970. 

28. Robinson, D. A. Models of the mechanics of eye move- 
ments. In: Models of Oculomotor Behavior and Control, 
edited by B. L. Zuber. Boca Raton: CRC Press, 1981, pp. 
21-41. 

29. Robinson, D. A., D. M. O'Meara, A. B. Scott, and C. C. 
Collins. Mechanical components of human eye movements. 
J. Appl. Physiol. 26:548-553, 1969. 

30. Schiller, P. H. The discharge characteristics of single units 
in the oculomotor and abducens nuclei of the unanesthetized 
monkey. Exp. Brain Res. 10:347-362, 1970. 

31. Spencer, R. F., and J. D. Porter. Structural organization of 
the extraocular muscles. In: Neuroanatomy of the Oculomo- 
tor System, edited by J. A. BiJttner-Ennever. Amsterdam: 
Elsevier, 1988, pp. 33-80. 

32. Wainwright, N. W., C. D. Biggs, R. N. Currey, and R. S. 
Gosline. Mechanical Design in Organisms. Princeton: 
Princeton University Press, 1976. 

33. Woledge, R. C., N. A. Curtin, and E. Homsher. Energetic 
Aspects of Muscle Contraction. New York: Academic Press, 
1985. 

34. Zahalak, G. I. A distribution-moment approximation for ki- 
netic theories of muscular contraction. Math. Biosci. 55:89- 
114, 1980. 

APPENDIX A 

This appendix describes the parameter  derivations for 
the Hil l- type model of  the monkey horizontal saccadic 
system and the equations used to simulate the model. The 
following symbols will be used: K is an elasticity, B is a 
viscosity,  J is a moment of  inertia, A is cross-sectional 
area, R is the globe radius, L is muscle length, Vma~ is the 
maximum velocity of  shortening of  the muscle,  super- 
script M denotes a monkey model  parameter,  superscript H 
denotes a human model  parameter,  subscript o denotes an 
orbit parameter. If  no superscript is used, the parameter is 
for the model  of  monkey saccades. Figure 1 shows the 
topological  arrangement of  the lumped mechanical  ele- 
ments in the model. 

The values of  the parameters for the monkey orbital 
mechanics in the present paper  are mostly derived directly 
from monkey data or estimated by scaling human data 
(7,8,29).  In the monkey  the extraocular  muscles  are 
shorter, 20 mm (21) compared with 40 mm (15) and 
smaller in cross-sectional area, 9 mm z (21) compared with 
16.9 mm 2 (15). Also,  the globe is smaller,  9.3 mm radius 
(21) compared with 11 mm (5). Finally,  monkey saccades 
are faster than the same size human saccades (1,10). The 
moment  of  inertia of  the monkey orbit was derived by 
approximating the globe as a rigid sphere of  radius 9.3 
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mm (20) and density 1 g/ml: Jo M = 2 . 8 8 e - 5  gf sec2/ 
degree. In the Lehman and Stark human model (20), the 
parameters representing the passive viscoelasticity of the 
orbit are the lumped effects of the optic nerve, orbital fat, 
the other extraocular muscles, other surrounding tissue, 
and the passive elasticity of the medial and lateral recti. 
However, to compare the forces recorded with those pre- 
dicted by the model, we must separate the contribution of 
the medial and lateral recti to the passive elasticity. The 
orbital elasticity has been measured in humans with the 
medial and lateral recti detached and was found to be 
K~o = 0.5 gf/degree (29). We assumed that the tissue con- 
tributing to the elasticity was proportional to the surface 
area of the globe, so passive elasticity was scaled by the 
ratio of the surface areas of the globes and viscosity was 
scaled such that the viscoelastic time constant (B/K) re- 
mained the same as that estimated for humans (20): 
B y  = 0.01 gf sec/degree, Ko M = 0.35 gf/degree. 

The passive elasticity of the medial and lateral recti 
were separated so that the model could predict total mus- 
cle force for comparison with the measured data. The 
force contribution of the passive muscle elasticity was 
estimated by fitting the following equation to data of the 
passive length-tension curve of the monkey medial rectus 
(12): 

/;pM = apt .  (x + 25) 2 , x >  --25 ~ 

0, otherwise 

w h e r e ,  F f f  (gf)  is the p a s s i v e  m u s c l e  f o r c e ,  
a M = 0.001975 gf/degree 2 is a constant, and x (degrees) 
is eye position (positive is temporal). A symmetric equa- 
tion was used for the lateral rectus. Note that even though 
the individual passive muscle elasticities are nonlinear, the 
nonlinearities tend to cancel each other such that the par- 
allel combination is quasilinear (29). 

Human muscle series elasticity was estimated from 
quick release experiments on human extraocular muscle 
(8). Since elasticity should increase with area (analogous 
to parallel springs) and decrease with length (analogous to 
series springs), the series elasticity was scaled from the 
human to the monkey; at the same time, it was scaled 
relative to the size of the globe (since the units used in the 
model are per degree not per millimeter): 

A M L/4 R H 
KM = KHse " L--~ " A---ff " R--- f f  

where K M = 2.3 gf/degree, KHse = 1.8 gf/degree, 
A M = 9 mm 2, A n = 16.9 mm 2, R M = 9.3 mm,  
R u = l l m m ,  L M = 20 mm, L H = 4 0 m m .  

The nonlinear viscosities in the model (B z, B e) charac- 
terize the force-velocity relationship of muscle, which was 
derived from experimental work on skeletal muscle in 
other animals. It had been shown that tetanized muscle 

shows a hyperbolic force-velocity relationship during 
shortening, and the parameters describing the asymptotes 
of the hyperbola are related to the muscle's maximum rate 
of shortening (Vmax) and maximum isometric force (Fo) 
(16). The maximum rate of shortening for the monkey 
model was estimated by scaling the data for human ex- 
traocular muscle by muscle length and globe radius (the 
latter is necessary because the maximum velocity is in 
units of degrees/sec: 

M H . LM " RH 
Vmax = Vmax L H R M 

where V~a~ = 2200 degrees/sec, VHma~ = 3600 degrees/ 
sec. Moreover, the whole force-velocity relationship was 
assumed to scale with activation. 

Finally, the neural inputs (I1, 12) were similar to those 
used in the human model (20) ( i .e . ,  the pulse-step pattern 
[27]). The pulse and pause durations (PD in Fig. 1) were 
assumed to be half the duration of the saccade; the pulse or 
pause height (PH) is scaled nonlinearly with saccade mag- 
nitude; and the step level (S) is scaled with saccade mag- 
nitude. Finally, the innervation envelopes are filtered with 
first-order lags and converted into an equivalent active 
state force. Because monkey saccades are faster, the 
inputs and filtering had to be modified: pulse and 
pause duration (PD) = 0.5 �9 saccade duration = 12.5 
msec (10~ 20 msec (20~ fixation forces and equivalent 
input were scaled by cross-sectional area (0.5) so agonist 
step (S) = (8 + 0.55 �9 size) gf, an tagonis t  step 
(S) = (8 - 0.04 �9 size) gf. Pulse height (PH) = 65 gf 
for 10 ~ saccade; 120 gf for 20 ~ Pause height (PH) = 
0.25 + exp(-s ize/2.5) .  The filter time constants = 7 

ms. These parameter values were set after adjustment dur- 
ing simulations so that the model generated saccades of 
the appropriate magnitude with realistic peak velocities, 
within the range observed in the recorded monkey data. 

The differential equations describing the model are as 
follows: 

dx 
- -  V 

dt 

dv 1 

dt 

dyl 
dt 

ay2 
dt 

dEal 

dt 

dFa2  

dt 

- j [ - K o x  - Bov  + Fp ,  + gse (Yl - -  X )  - -  Fp 2 

+ g s e  ( x  - Y2)] 

1 
- -  [Fal -- gse (Yl --  X)] 

BI 

1 
- -  [ - F a 2  - g s e  (Y2 - x) ]  

B2 

1 
(11 - FaO 

T1 

1 
(I 2 -- Fa2 ) 

T2 
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where 

nl  = 
(Fal + 0.25Fal) 

t 
3Fal 

allen ' 

dyl 
m > ~  0 
dt 

dyl 
m < 0  
dt 

3Fa2 
B 2 -- dlen ' 

dy2 
i > ~  0 
dt 

(Fa2 + 0.25Fa2) dy2 

dy 2 ' dt 
b H + - -  

dt 

< 0  

where x (degrees) is eye position; v (degrees/sec) is eye 
velocity; Yl, Y2 (degrees) are positions of the hypothetical 
nodes; Fal, Fa2 (gf) are "active state" (i.e., hypothetical 
isometric force); I~, 12 (equivalent gf) are the innervations 
to each muscle (pulse-step); B 1, B 2 (gf sec/deg) are the 
muscle viscosities; T 1, T 2 (msec) are the time constants of 
the input filters; b/~ = Vmoj4 (degrees/sec) is a constant 
defined by Hill (16) used to characterize the shortening 
force-velocity relationship of muscle; die n = b/4 is the pa- 
rameter scaling lengthening force-velocity relation. This 
parameter was explicitly defined because it is varied in 
some of the simulations (see discussion in the text). Spe- 
cifically in the modified Hill model die n w a s  different in 
the agonist and antagonist muscles: die n = 4150 in the 
agonist and 450 in the antagonist. 

A P P E N D I X  B 

Zahalak's distribution moment (DM) muscle model is 
an approximation to Huxley's 1957 two-state cross-bridge 
model of sarcomere contraction. Figure 5 shows a sche- 
matic of the model. When partial activation and myosin/ 
actin filament overlap is also considered, the following 
partial differential equation describes the rate of change of 
the cross-bridge bond distribution: 

On(x, t) On(x, t) 
v(t) - -  - f ( x )  {a(t)e[s(t)] - n(x, t)} 

Ot Ox 

- g(x)n(x, t) 

where n(x, t) is the bond distribution; v(t) is the velocity of 
shortening; f(x) is the rate of bond attachment; g(x) is the 
rate of bond detachment; a(t) is the fraction of cross- 
bridge sites activated; c[s(t)] is the fraction of sites in the 
region of actin/myosin filament overlap; s(t) is the sarco- 
mere length. The following equations result from Za- 
halak's derivation of the model after normalization by the 
maximum length (h) at which a cross-bridge can be 
formed (34): 

dQh 

dt - a ( O c [ s ( t ) ] f S x  - ~bx(Q0, Q1, Q2) - XuQx-1, 

h = 0 ,  1,2.  

where 

x 
-- ~, Qx = ~Xn(~, t)d~, Qx-1 - 0 

13x - f : ~  ~xf (Od~ ' ~bx - f:~o ~x[f(~) + g(O]n(~, t)d~ 

P -- -Qoo' q "-- \ Q o ]  u - -~, 

with 

Q0 - (~ - e )~  
n(~, t) = ~ /~ -~qe  2q2 

where Qo, Q1, Q2 are the normalized moments of the 
Gaussian bond distribution; ~ is the normalized spring 
length; u is the normalized rate of shortening; n(~, t) is the 
normalized bond distribution; p is the mean of the Gaus- 
sian n(~, t); and q is the standard deviation of the Gaussian 
n(~, t); s(t) is the sarcomere length; f (the rate of cross- 
bridge attachment) and g (the rate of cross-bridge detach- 
ment) are described as follows: 

0, 6 < 0 ,  
f(~) = f ~ ,  0 < ~ < 1, 

0, 1<~,  

g2, ~ < 0, 
g(~) = gl~, 0 < ~ < 1, 

gig + g3(~ -- 1), 1 < 

Muscle force is calculated from the bond distribution as 
follows: 

force - mseek mseekh2ApeQ 1 
21 f:o~ xn(x, t)dx - 21 

where m is the number of cross-bridge sites (/cm3), Spp is 
the sarcomere length in the reference state (primary posi- 
tion) (cm), k is the cross-bridge spring constant (dyne/cm); 
I is the distance between actin binding sites (cm); Ape is 
the cross-sectional area in the reference state (cmZ). The 
maximum isometric force at a particular length is found by 
solving the partial differential equation for steady-state, 
zero velocity condition: 

mseekh2A?p f l  
max force (eye) - 21 "Ce (eye) f l  + gl 
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In addition eye velocity must be converted to normalized 
sarcomere velocity: 

V - -  

dE ~ I v 
SGN, u = - 

dt 2ns h 

where 

2IIR 

~ / -  360 

SGN = - 1 ,  for  medial rectus 

+ 1, for  lateral rectus 

v is the velocity of shortening of the half-sarcomere [crn/ 
s/half-sarcomere]; ns is the number of sarcomeres in one 
myofibril running the length of the muscle; u is the nor- 
malized velocity (actin sites/sec/half-sarcomere); R is the 
radius of the globe (cm); ~ is the a conversion factor 
(cm/degree); SGN converts the sign of velocity to positive 
for shortening muscle; dE/dt is eye velocity (degrees/sec). 

The values of the parameters we used in the DM model 
were derived mostly from monkey extraocular muscle 
data, wherever possible; however, several estimates were 
made from studies on other skeletal muscle. Parameters 
were measured directly, calculated from measured param- 
eters, estimated to be consistent with measured muscle 
properties, or estimated by trial and error in simulations. 
All parameters estimated by simulation were determined 
for one saccade trajectory and then tested with other tra- 
jectories. 

To simplify the comparison of the DM and Hill-type 
muscle models, the cross-bridge overlap function was ne- 
glected in the simulations (i.e., c[s(t)] = 1) because the 
Hill-type model ignores the length-tension curve. How- 
ever, it was used to estimate or verify estimates of other 
parameters, so its derivation will be described. This func- 
tion was estimated from the length-tension curves of hu- 
man LR (29) and the sarcomere length-tension curve of 
mammalian muscle (33). Since all sarcomeres are as- 
sumed to be identical, the plateau portion of the whole- 
muscle length-tension curve corresponds to the plateau 
region in the sarcomere length-tension curve as does the 
respective lengths at which the tension reaches zero. The 
cross-bridge function in degrees of eye rotation that results 
from this line of reasoning is: 

i f ( eye  < -80 )  then Ce(eye) = 0.0 

else if  (eye < 25) then Ce(eye) = 0.0095 (eye + 80) 

else Ce(eye) = 1.0 

i f  (Sten < 0.7 Ixm) then Cs(Slen) = 0.0 

else if  (Sle, < 2.39 I~m) then C s ( S l e n )  : 5917 (Slen + 0.7) 

else cs(Sle,) = 1.0 

where sle n is the sarcomere length (p~m); Cs(Slen) is the 
cross-bridge overlap function. The partially innervated ac- 
tive length-tension curves of whole muscle are calculated 
by scaling the whole length-tension curve by the level of  
innervation. 

The muscle length at primary position, Lpp = 1.985 
cm (22); muscle cross-sectional area at primary position, 
App = 0.0965 cm 2 (22); sarcomere length at primary po- 
sition, Spp = 1 . 9 8 e - 4  cm, (estimated from the cross- 
b r idge  o v e r l a p  func t ion ) ;  rad ius  o f  the g l o b e ,  
R = 0.93 --- 0.05 cm (22); cross-bridge sites per unit vol- 
ume, m = 5.7e16 1/cm 3 (18); maximum active isometric 
force F o = 55 gf (12); maximum active isometric force at 
primary position, Fop = 45 gf (12); maximum force/ 
area, Po = 670 gf/cm ff (26); maximum velocity of short- 
ening, SVma~ = 25 lengths/sec (estimated from rat infe- 
rior rectus, assuming a sarcomere length of 2.39 Ixm [4]); 
number of sarcomeres in series, n s = Lpp/Spp = 10,025; 
conversion factor from degrees to cm, ~/ = 0.0162 cm/ 
deg; maximum velocity of shortening, Vma ~ = SVmax Lpp/ 
"y = 3070 degrees/sec. The maximum distance over 
which a cross-bridge can form, h = 1 . 8 5 e - 6  cm 
(18,33); energy per cross-bridge cycle, e = 7 e -  13 erg/ 
molecule; efficiency of cross-bridge cycle: the ratio of 
work to energy, w/e = 0.8 (18); dimensionless ratio, 
which partially characterizes the force-velocity relation- 
ship of shortening muscle, an/Po = 0.5; dimensionless 
ratio, which partially characterizes the force-velocity re- 
lationship of shortening muscle, bl~/Vm~ = 0.33 (18,33). 

The parameters describing the rate of cross-bridge de- 
tachment and attachment were found as follows. The rate 
of cross-bridge detachment in region 0 < 6 < h and part 
of the rate in region 6 > 1, g16 = 4256 1/sec for the 
agonist; 2206 1/sec for the antagonist. For the antagonist 
the value of gl was chosen to satisfy Hill 's result that the 
maintenance heat, E o = aHb H. E o is derived from the 
cross-bridge model. 

E o  - m _ _  

mehgl f l  PoVmax 
m 

21 f l + g l  6 

Substituting for Po in the equation for E o and solving for 
gl yields: 

Vma x w 

g l -  6h e 

where eye is eye position relative to primary position (de- 
gree); c e (eye) is the cross-bridge overlap function, or (for 
both the LR and MR): 

Simulations suggested that the higher value of gl was 
desirable for the agonist muscle. The distance between 
cross-bridge sites, l = 3 . 7 5 e - 6  cm. (An estimate of 
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3 . 5 e -  6 [33] was originally chosen. However, this led to 
an estimate of f l  that was less than two times g~. The value 
chosen was a compromise between overestimating I and 
underestimating f l  relative to gl-) 

The rate of  c ross -br idge  a t tachment  in region 
0 < { < h, f ,  { = 950{ 1/see. This value off1 was de- 
termined solving E o for f , :  

f/ 
- -  - 17,4415l, gl = 425 

f l  + gl 

As a result, as the estimate of l increases, so does the 
estimate of f l .  f l  is usually chosen to be considerably 
larger than gl so the force-velocity relationship shows a 
non-linearity at zero velocity (18). 

The rate of cross-bridge detachment in region {x < 0, 
g2 = 2200 1/see. The parameter g2 was adjusted so the 
model force approached zero as the velocity of shortening 
approached V,,a,,. Huxley made the arbitrary assumption 
that ff/ + gl)h/sec = b n because it simplified the steady- 
state solution of the partial differential equation; as a re- 
suit, he concluded that gz/(fl + gl) = 3.919. This was 
not done in our derivation. 

We set the partial rate of cross-bridge detachment in the 
region ~ < 1, g3 = - 425 1/see for the agonist and - 220 
1/see for the antagonist. The value of g3 was chosen such 
that g would be a constant in the region beyond which 
cross-bridges were not likely to form and piecewise con- 
tinuous with the rate of detachment in the region in which 
cross-bridges are likely to attach (0 to 1). This parameter 
g3 affects the force/lengthening velocity relationship. 

Since Po = msokh2fj[41(fl + gl)] (solve the partial 
differential equation for steady-state, zero velocity), where 
s o is the sarcomere length at which the maximum devel- 
oped force is achieved, the spring constant of the cross- 
bridges must be: k = Po41(fl + gl)/(msoh2f~) = 0.3 
dyne/cm; the spring constant is derived from measure- 
ments made at maximum isometric force, and, therefore, 
is based on gl of the agonist muscle. We have assumed 
that the spring constant is the same in both fiber types 
(slow and fast). 

Integrating the equations for [30 - [32 (see model de- 

scription) yields: [3 o = f l /2  = 262.5; [31 = f J 3  = 175; 
[32 = f l /4 = 131.25. 

APPENDIX C 

This appendix describes the method used to estimation 
absolute forces from the measured force profiles. Because 
the amplifiers were modified early in the course of the 
experiments (but before any of the data used here was 
collected), it was necessary to estimate absolute forces 
instead of directly calculating the absolute forces repre- 
sented by the data. First, we assumed that the forces at 
primary position and the range of forces generated during 
each session were the same in the LR and MR. In humans, 
some data suggest the MR may exert higher forces than 
the LR (7); however, other data support the assumption 
(6,8). As of this time, the issue has not been explored in 
monkeys, so we will make the assumption that they are the 
same. Second, we assumed the force developed in mon- 
key extraocular muscle could be estimated by scaling the 
force developed in human extraocular muscle by the ratio 
of cross-sectional areas of the two muscles. To this end, 
we noted that the monkey fixation force at primary posi- 
tion corresponded to 32.5% of the total range of forces 
recorded in the monkey (i.e., the minimum force mea- 
surement was considered 0% and the maximum 100% 
(12). Then we noted that the human fixation force at pri- 
mary position in the LR is, on average, about 13.7 gf (29). 
Moreover, the ratio of monkey to human cross-sectional 
area is about 0.57 (0.0965 cm z monkey [21]; 0.169 cm / 
human [15]). Therefore, we assumed 32.5% corresponded 
to 7.8 gf and scaled the force data accordingly. The as- 
sumptions made in this derivation is supported by three 
further observations. First, the force developed by mus- 
cles with the same fiber composition scales by cross- 
sectional area (for a given level of innervation). Second, 
the maximum active isometric force for monkey and hu- 
man LR scale approximately the same as cross-sectional 
area (55 gf monkey [12]; 100 gf human [6]). Finally, we 
noted that the position dependent fixation forces recorded 
in our monkey scaled relative to each other just as those 
fixation forces recorded in the human extraocular muscle 
scaled relative to each other (27). 


